12,262 research outputs found

    Drape optimization in woven composites manufacture.

    Get PDF
    This paper addresses the optimisation of forming in manufacturing of composites. A simplified finite element model of draping is developed and implemented. The model incorporates the non-linear shear response of textiles and wrinkling due to buckling of tows. The model is validated against experimental results and it is concluded that it reproduces successfully the most important features of the process. The simple character of the model results in low computational times that allow its use within an optimisation procedure. A genetic algorithm is used to solve the optimisation problem of minimising the wrinkling in the formed component by selecting a suitable holding force distribution. The effect of regularisation is investigated and the L-curve is used to select a regularisation parameter value. Optimised designs resulting from the inversion procedure have significantly lower wrinkling than uniform holding force profiles, while regularisation allows force gradients to be kept relatively low so that suggested process designs are feasible

    Kajian amalan budaya Orang Asli Suku Kaum Jakun di Kampung Peta

    Get PDF
    Orang Asli suku kaum Jakun kaya dengan pelbagai budaya yang unik dan tersendiri. Arus globalisasi kini, telah memberi kesan kepada pengamalan kebudayaan warisan mereka dalam kehidupan seharian. Hal ini disebabkan kurangnya penglibatan daripada generasi muda hari ini. Terdapat tiga objektif dalam kajian ini iaitu mengenalpasti jenis budaya material dan bukan material yang terdapat di Kampung Peta, mengkaji kecenderungan generasi muda kepada pengamalan budaya warisan suku kaum mereka dan menganalisis langkah untuk mengekalkan amalan budaya warisan Orang Asli Jakun di Kampung Peta. Metodologi yang digunakan adalah berbentuk kualitatif dengan menyediakan dua set soalan temu bual mendalam kepada kumpulan fokus atau focus group, pemerhatian peserta dan pemerhatian tidak turut serta. Responden adalah terdiri daripada dua kumpulan iaitu penduduk Jakun di Kampung Peta yang mempunyai kemahiran dalam aspek amalan budaya dan generasi muda iaitu remaja dan belia Jakun untuk mencapai objektif kajian pertama dan kedua. Hasil kajian utama terdapat amalan budaya yang masih dilakukan dan dijalankan di Kampung Peta iaitu amalan budaya material yang terdiri daripada suku kaum Jakun, gelaran, dialek, peralatan, kraf tangan, makanan, nyanyian, tarian dan tempat tinggal. Bagi amalan budaya bukan material ialah agama dan kepercayaan serta perubatan tradisional manakala kecenderungan generasi muda kepada pengamalan budaya warisan kerana mereka tidak menunjukkan minat dan komitmen untuk mewarisi amalan budaya tersebut. Justeru, langkah pengekalan bagi mengekalkan kebudayaan suku kaum mereka iaitu dengan cara pengkomersialan produk budaya, memperkasa dan meningkatkan kebolehan Orang Asli, memberikan pendedahan yang khusus, memberi galakan dan insentif dan mewujudkan Rumah Budaya. Cadangan ini bukan sahaja boleh mengekalkan amalan budaya tetapi sebagai medium kesinambungan warisan untuk pengetahuan dan tatapan generasi akan datang

    The potential use of service-oriented infrastructure framework to enable transparent vertical scalability of cloud computing infrastructure

    Get PDF
    Cloud computing technology has become familiar to most Internet users. Subsequently, there has been an increased growth in the use of cloud computing, including Infrastructure as a Service (IaaS). To ensure that IaaS can easily meet the growing demand, IaaS providers usually increase the capacity of their facilities in a vertical IaaS increase capability and the capacity for local IaaS amenities such as increasing the number of servers, storage and network bandwidth. However, at the same time, horizontal scalability is sometimes not enough and requires additional strategies to ensure that the large number of IaaS service requests can be met. Therefore, strategies requiring horizontal scalability are more complex than the vertical scalability strategies because they involve the interaction of more than one facility at different service centers. To reduce the complexity of the implementation of the horizontal scalability of the IaaS infrastructures, the use of a technology service oriented infrastructure is recommended to ensure that the interaction between two or more different service centers can be done more simply and easily even though it is likely to involve a wide range of communication technologies and different cloud computing management. This is because the service oriented infrastructure acts as a middle man that translates and processes interactions and protocols of different cloud computing infrastructures without the modification of the complex to ensure horizontal scalability can be run easily and smoothly. This paper presents the potential of using a service-oriented infrastructure framework to enable transparent vertical scalability of cloud computing infrastructures by adapting three projects in this research: SLA@SOI consortium, Open Cloud Computing Interface (OCCI), and OpenStack

    Subdivision Shell Elements with Anisotropic Growth

    Full text link
    A thin shell finite element approach based on Loop's subdivision surfaces is proposed, capable of dealing with large deformations and anisotropic growth. To this end, the Kirchhoff-Love theory of thin shells is derived and extended to allow for arbitrary in-plane growth. The simplicity and computational efficiency of the subdivision thin shell elements is outstanding, which is demonstrated on a few standard loading benchmarks. With this powerful tool at hand, we demonstrate the broad range of possible applications by numerical solution of several growth scenarios, ranging from the uniform growth of a sphere, to boundary instabilities induced by large anisotropic growth. Finally, it is shown that the problem of a slowly and uniformly growing sheet confined in a fixed hollow sphere is equivalent to the inverse process where a sheet of fixed size is slowly crumpled in a shrinking hollow sphere in the frictionless, quasi-static, elastic limit.Comment: 20 pages, 12 figures, 1 tabl

    Applicability valuation for evaluation of surface deflection in automotive outer panels

    Get PDF
    Upon unloading in a forming process there is elastic recovery, which is the release of the elastic strains and the redistribution of the residual stresses through the thickness direction, thus producing surface deflection. It causes changes in shape and dimensions that can create major problem in the external appearance of outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Many factors could affect surface deflection in the process, such as material variations in mechanical properties, sheet thickness, tool geometry, processing parameters and lubricant condition. The shape and dimension problem in press forming is defined as a trouble mainly caused by the elastic recovery of materials during the forming. The use of high strength steel sheets in the manufacturing of automobile outer panels has increased in the automotive industry over the years because of its lightweight and fuel-efficient improvement. But one of the major concerns of stamping is surface deflection in the formed outer panels. Hence, to be cost effective, accurate prediction must be made of its formability. The automotive industry places rigi

    Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon

    Get PDF
    Acknowledgments The authors would like to thank EPSRC (EP/K018345/1) and Royal Society-NSFC International Exchange Scheme for providing financial support to this research.Peer reviewedPublisher PD

    IST Austria Thesis

    Get PDF
    Fabrication of curved shells plays an important role in modern design, industry, and science. Among their remarkable properties are, for example, aesthetics of organic shapes, ability to evenly distribute loads, or efficient flow separation. They find applications across vast length scales ranging from sky-scraper architecture to microscopic devices. But, at the same time, the design of curved shells and their manufacturing process pose a variety of challenges. In this thesis, they are addressed from several perspectives. In particular, this thesis presents approaches based on the transformation of initially flat sheets into the target curved surfaces. This involves problems of interactive design of shells with nontrivial mechanical constraints, inverse design of complex structural materials, and data-driven modeling of delicate and time-dependent physical properties. At the same time, two newly-developed self-morphing mechanisms targeting flat-to-curved transformation are presented. In architecture, doubly curved surfaces can be realized as cold bent glass panelizations. Originally flat glass panels are bent into frames and remain stressed. This is a cost-efficient fabrication approach compared to hot bending, when glass panels are shaped plastically. However such constructions are prone to breaking during bending, and it is highly nontrivial to navigate the design space, keeping the panels fabricable and aesthetically pleasing at the same time. We introduce an interactive design system for cold bent glass façades, while previously even offline optimization for such scenarios has not been sufficiently developed. Our method is based on a deep learning approach providing quick and high precision estimation of glass panel shape and stress while handling the shape multimodality. Fabrication of smaller objects of scales below 1 m, can also greatly benefit from shaping originally flat sheets. In this respect, we designed new self-morphing shell mechanisms transforming from an initial flat state to a doubly curved state with high precision and detail. Our so-called CurveUps demonstrate the encodement of the geometric information into the shell. Furthermore, we explored the frontiers of programmable materials and showed how temporal information can additionally be encoded into a flat shell. This allows prescribing deformation sequences for doubly curved surfaces and, thus, facilitates self-collision avoidance enabling complex shapes and functionalities otherwise impossible. Both of these methods include inverse design tools keeping the user in the design loop
    • …
    corecore