4,554 research outputs found

    Inverse Reinforcement Learning in Swarm Systems

    Full text link
    Inverse reinforcement learning (IRL) has become a useful tool for learning behavioral models from demonstration data. However, IRL remains mostly unexplored for multi-agent systems. In this paper, we show how the principle of IRL can be extended to homogeneous large-scale problems, inspired by the collective swarming behavior of natural systems. In particular, we make the following contributions to the field: 1) We introduce the swarMDP framework, a sub-class of decentralized partially observable Markov decision processes endowed with a swarm characterization. 2) Exploiting the inherent homogeneity of this framework, we reduce the resulting multi-agent IRL problem to a single-agent one by proving that the agent-specific value functions in this model coincide. 3) To solve the corresponding control problem, we propose a novel heterogeneous learning scheme that is particularly tailored to the swarm setting. Results on two example systems demonstrate that our framework is able to produce meaningful local reward models from which we can replicate the observed global system dynamics.Comment: 9 pages, 8 figures; ### Version 2 ### version accepted at AAMAS 201

    Guided Deep Reinforcement Learning for Swarm Systems

    Full text link
    In this paper, we investigate how to learn to control a group of cooperative agents with limited sensing capabilities such as robot swarms. The agents have only very basic sensor capabilities, yet in a group they can accomplish sophisticated tasks, such as distributed assembly or search and rescue tasks. Learning a policy for a group of agents is difficult due to distributed partial observability of the state. Here, we follow a guided approach where a critic has central access to the global state during learning, which simplifies the policy evaluation problem from a reinforcement learning point of view. For example, we can get the positions of all robots of the swarm using a camera image of a scene. This camera image is only available to the critic and not to the control policies of the robots. We follow an actor-critic approach, where the actors base their decisions only on locally sensed information. In contrast, the critic is learned based on the true global state. Our algorithm uses deep reinforcement learning to approximate both the Q-function and the policy. The performance of the algorithm is evaluated on two tasks with simple simulated 2D agents: 1) finding and maintaining a certain distance to each others and 2) locating a target.Comment: 15 pages, 8 figures, accepted at the AAMAS 2017 Autonomous Robots and Multirobot Systems (ARMS) Worksho

    Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning

    Full text link
    Swarm systems constitute a challenging problem for reinforcement learning (RL) as the algorithm needs to learn decentralized control policies that can cope with limited local sensing and communication abilities of the agents. While it is often difficult to directly define the behavior of the agents, simple communication protocols can be defined more easily using prior knowledge about the given task. In this paper, we propose a number of simple communication protocols that can be exploited by deep reinforcement learning to find decentralized control policies in a multi-robot swarm environment. The protocols are based on histograms that encode the local neighborhood relations of the agents and can also transmit task-specific information, such as the shortest distance and direction to a desired target. In our framework, we use an adaptation of Trust Region Policy Optimization to learn complex collaborative tasks, such as formation building and building a communication link. We evaluate our findings in a simulated 2D-physics environment, and compare the implications of different communication protocols.Comment: 13 pages, 4 figures, version 2, accepted at ANTS 201

    Optimizing collective fieldtaxis of swarming agents through reinforcement learning

    Full text link
    Swarming of animal groups enthralls scientists in fields ranging from biology to physics to engineering. Complex swarming patterns often arise from simple interactions between individuals to the benefit of the collective whole. The existence and success of swarming, however, nontrivially depend on microscopic parameters governing the interactions. Here we show that a machine-learning technique can be employed to tune these underlying parameters and optimize the resulting performance. As a concrete example, we take an active matter model inspired by schools of golden shiners, which collectively conduct phototaxis. The problem of optimizing the phototaxis capability is then mapped to that of maximizing benefits in a continuum-armed bandit game. The latter problem accepts a simple reinforcement-learning algorithm, which can tune the continuous parameters of the model. This result suggests the utility of machine-learning methodology in swarm-robotics applications.Comment: 6 pages, 3 figure

    Deep Reinforcement Learning for Swarm Systems

    Full text link
    Recently, deep reinforcement learning (RL) methods have been applied successfully to multi-agent scenarios. Typically, these methods rely on a concatenation of agent states to represent the information content required for decentralized decision making. However, concatenation scales poorly to swarm systems with a large number of homogeneous agents as it does not exploit the fundamental properties inherent to these systems: (i) the agents in the swarm are interchangeable and (ii) the exact number of agents in the swarm is irrelevant. Therefore, we propose a new state representation for deep multi-agent RL based on mean embeddings of distributions. We treat the agents as samples of a distribution and use the empirical mean embedding as input for a decentralized policy. We define different feature spaces of the mean embedding using histograms, radial basis functions and a neural network learned end-to-end. We evaluate the representation on two well known problems from the swarm literature (rendezvous and pursuit evasion), in a globally and locally observable setup. For the local setup we furthermore introduce simple communication protocols. Of all approaches, the mean embedding representation using neural network features enables the richest information exchange between neighboring agents facilitating the development of more complex collective strategies.Comment: 31 pages, 12 figures, version 3 (published in JMLR Volume 20

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Learning Opposites Using Neural Networks

    Full text link
    Many research works have successfully extended algorithms such as evolutionary algorithms, reinforcement agents and neural networks using "opposition-based learning" (OBL). Two types of the "opposites" have been defined in the literature, namely \textit{type-I} and \textit{type-II}. The former are linear in nature and applicable to the variable space, hence easy to calculate. On the other hand, type-II opposites capture the "oppositeness" in the output space. In fact, type-I opposites are considered a special case of type-II opposites where inputs and outputs have a linear relationship. However, in many real-world problems, inputs and outputs do in fact exhibit a nonlinear relationship. Therefore, type-II opposites are expected to be better in capturing the sense of "opposition" in terms of the input-output relation. In the absence of any knowledge about the problem at hand, there seems to be no intuitive way to calculate the type-II opposites. In this paper, we introduce an approach to learn type-II opposites from the given inputs and their outputs using the artificial neural networks (ANNs). We first perform \emph{opposition mining} on the sample data, and then use the mined data to learn the relationship between input xx and its opposite x˘\breve{x}. We have validated our algorithm using various benchmark functions to compare it against an evolving fuzzy inference approach that has been recently introduced. The results show the better performance of a neural approach to learn the opposites. This will create new possibilities for integrating oppositional schemes within existing algorithms promising a potential increase in convergence speed and/or accuracy.Comment: To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 201
    • …
    corecore