296,099 research outputs found

    Ensemble Kalman filter for neural network based one-shot inversion

    Full text link
    We study the use of novel techniques arising in machine learning for inverse problems. Our approach replaces the complex forward model by a neural network, which is trained simultaneously in a one-shot sense when estimating the unknown parameters from data, i.e. the neural network is trained only for the unknown parameter. By establishing a link to the Bayesian approach to inverse problems, an algorithmic framework is developed which ensures the feasibility of the parameter estimate w.r. to the forward model. We propose an efficient, derivative-free optimization method based on variants of the ensemble Kalman inversion. Numerical experiments show that the ensemble Kalman filter for neural network based one-shot inversion is a promising direction combining optimization and machine learning techniques for inverse problems

    On the Regularizing Property of Stochastic Gradient Descent

    Get PDF
    Stochastic gradient descent is one of the most successful approaches for solving large-scale problems, especially in machine learning and statistics. At each iteration, it employs an unbiased estimator of the full gradient computed from one single randomly selected data point. Hence, it scales well with problem size and is very attractive for truly massive dataset, and holds significant potentials for solving large-scale inverse problems. In the recent literature of machine learning, it was empirically observed that when equipped with early stopping, it has regularizing property. In this work, we rigorously establish its regularizing property (under \textit{a priori} early stopping rule), and also prove convergence rates under the canonical sourcewise condition, for minimizing the quadratic functional for linear inverse problems. This is achieved by combining tools from classical regularization theory and stochastic analysis. Further, we analyze the preasymptotic weak and strong convergence behavior of the algorithm. The theoretical findings shed insights into the performance of the algorithm, and are complemented with illustrative numerical experiments.Comment: 22 pages, better presentatio

    Solving ill-posed inverse problems using iterative deep neural networks

    Full text link
    We propose a partially learned approach for the solution of ill posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularization theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularizing functional. The method results in a gradient-like iterative scheme, where the "gradient" component is learned using a convolutional network that includes the gradients of the data discrepancy and regularizer as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against FBP and TV reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the TV reconstruction while being significantly faster, giving reconstructions of 512 x 512 volumes in about 0.4 seconds using a single GPU
    • …
    corecore