4 research outputs found

    Inverse Abstraction of Neural Networks Using Symbolic Interpolation

    Get PDF
    Neural networks in real-world applications have to satisfy critical properties such as safety and reliability. The analysis of such properties typically requires extracting information through computing pre-images of the network transformations, but it is well-known that explicit computation of pre-images is intractable. We introduce new methods for computing compact symbolic abstractions of pre-images by computing their overapproximations and underapproximations through all layers. The abstraction of pre-images enables formal analysis and knowledge extraction without affecting standard learning algorithms. We use inverse abstractions to automatically extract simple control laws and compact representations for pre-images corresponding to unsafe outputs. We illustrate that the extracted abstractions are interpretable and can be used for analyzing complex properties

    Inverse Abstraction of Neural Networks Using Symbolic Interpolation

    Get PDF
    Neural networks in real-world applications have to satisfy critical properties such as safety and reliability. The analysis of such properties typically requires extracting information through computing pre-images of the network transformations, but it is well-known that explicit computation of pre-images is intractable. We introduce new methods for computing compact symbolic abstractions of pre-images by computing their overapproximations and underapproximations through all layers. The abstraction of pre-images enables formal analysis and knowledge extraction without affecting standard learning algorithms. We use inverse abstractions to automatically extract simple control laws and compact representations for pre-images corresponding to unsafe outputs. We illustrate that the extracted abstractions are interpretable and can be used for analyzing complex properties

    Scalable Inference of Symbolic Adversarial Examples

    Full text link
    We present a novel method for generating symbolic adversarial examples: input regions guaranteed to only contain adversarial examples for the given neural network. These regions can generate real-world adversarial examples as they summarize trillions of adversarial examples. We theoretically show that computing optimal symbolic adversarial examples is computationally expensive. We present a method for approximating optimal examples in a scalable manner. Our method first selectively uses adversarial attacks to generate a candidate region and then prunes this region with hyperplanes that fit points obtained via specialized sampling. It iterates until arriving at a symbolic adversarial example for which it can prove, via state-of-the-art convex relaxation techniques, that the region only contains adversarial examples. Our experimental results demonstrate that our method is practically effective: it only needs a few thousand attacks to infer symbolic summaries guaranteed to contain β‰ˆ10258\approx 10^{258} adversarial examples
    corecore