3,654 research outputs found

    Computing control invariant sets in high dimension is easy

    Full text link
    In this paper we consider the problem of computing control invariant sets for linear controlled high-dimensional systems with constraints on the input and on the states. Set inclusions conditions for control invariance are presented that involve the N-step sets and are posed in form of linear programming problems. Such conditions allow to overcome the complexity limitation inherent to the set addition and vertices enumeration and can be applied also to high dimensional systems. The efficiency and scalability of the method are illustrated by computing approximations of the maximal control invariant set, based on the 10-step operator, for a system whose state and input dimensions are 30 and 15, respectively.Comment: arXiv admin note: substantial text overlap with arXiv:1708.0479

    Computing control invariant sets is easy

    Full text link
    In this paper we consider the problem of computing control invariant sets for linear controlled systems with constraints on the input and on the states. We focus in particular on the complexity of the computation of the N-step operator, given by the Minkowski addition of sets, that is the basis of many of the iterative procedures for obtaining control invariant sets. Set inclusions conditions for control invariance are presented that involve the N-step sets and are posed in form of linear programming problems. Such conditions are employed in algorithms based on LP problems that allow to overcome the complexity limitation inherent to the set addition and can be applied also to high dimensional systems. The efficiency and scalability of the method are illustrated by computing in less than two seconds an approximation of the maximal control invariant set, based on the 15-step operator, for a system whose state and input dimensions are 20 and 10 respectively

    Attenuation of Persistent L∞-Bounded Disturbances for Nonlinear Systems

    Get PDF
    A version of nonlinear generalization of the L1-control problem, which deals with the attenuation of persistent bounded disturbances in L∞-sense, is investigated in this paper. The methods used in this paper are motivated by [23]. The main idea in the L1-performance analysis and synthesis is to construct a certain invariant subset of the state-space such that achieving disturbance rejection is equivalent to restricting the state-dynamics to this set. The concepts from viability theory, nonsmooth analysis, and set-valued analysis play important roles. In addition, the relation between the L1-control of a continuous-time system and the l1-control of its Euler approximated discrete-time systems is established

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente
    • …
    corecore