120 research outputs found

    Quantale Modules and their Operators, with Applications

    Full text link
    The central topic of this work is the categories of modules over unital quantales. The main categorical properties are established and a special class of operators, called Q-module transforms, is defined. Such operators - that turn out to be precisely the homomorphisms between free objects in those categories - find concrete applications in two different branches of image processing, namely fuzzy image compression and mathematical morphology

    Quantale Modules, with Applications to Logic and Image Processing

    Full text link
    We propose a categorical and algebraic study of quantale modules. The results and constructions presented are also applied to abstract algebraic logic and to image processing tasks.Comment: 150 pages, 17 figures, 3 tables, Doctoral dissertation, Univ Salern

    Differential K-theory. A survey

    Full text link
    Generalized differential cohomology theories, in particular differential K-theory (often called "smooth K-theory"), are becoming an important tool in differential geometry and in mathematical physics. In this survey, we describe the developments of the recent decades in this area. In particular, we discuss axiomatic characterizations of differential K-theory (and that these uniquely characterize differential K-theory). We describe several explicit constructions, based on vector bundles, on families of differential operators, or using homotopy theory and classifying spaces. We explain the most important properties, in particular about the multiplicative structure and push-forward maps and will state versions of the Riemann-Roch theorem and of Atiyah-Singer family index theorem for differential K-theory.Comment: 50 pages, report based in particular on work done sponsored the DFG SSP "Globale Differentialgeometrie". v2: final version (only typos corrected), to appear in C. B\"ar et al. (eds.), Global Differential Geometry, Springer Proceedings in Mathematics 17, Springer-Verlag Berlin Heidelberg 201

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    Postquantum Br\`{e}gman relative entropies and nonlinear resource theories

    Full text link
    We introduce the family of postquantum Br\`{e}gman relative entropies, based on nonlinear embeddings into reflexive Banach spaces (with examples given by reflexive noncommutative Orlicz spaces over semi-finite W*-algebras, nonassociative Lp_p spaces over semi-finite JBW-algebras, and noncommutative Lp_p spaces over arbitrary W*-algebras). This allows us to define a class of geometric categories for nonlinear postquantum inference theory (providing an extension of Chencov's approach to foundations of statistical inference), with constrained maximisations of Br\`{e}gman relative entropies as morphisms and nonlinear images of closed convex sets as objects. Further generalisation to a framework for nonlinear convex operational theories is developed using a larger class of morphisms, determined by Br\`{e}gman nonexpansive operations (which provide a well-behaved family of Mielnik's nonlinear transmitters). As an application, we derive a range of nonlinear postquantum resource theories determined in terms of this class of operations.Comment: v2: several corrections and improvements, including an extension to the postquantum (generally) and JBW-algebraic (specifically) cases, a section on nonlinear resource theories, and more informative paper's titl

    Bibliographie

    Get PDF

    Digraph Algebras over Discrete Pre-ordered Groups

    Get PDF
    This thesis consists of studies in the separate fields of operator algebras and non-associative algebras. Two natural operator algebra structures, A ⊗_max B and A ⊗_min B, exist on the tensor product of two given unital operator algebras A and B. Because of the different properties enjoyed by the two tensor products in connection to dilation theory, it is of interest to know when they coincide (completely isometrically). Motivated by earlier work due to Paulsen and Power, we provide conditions relating an operator algebra B and another family {C_i}_i of operator algebras under which, for any operator algebra A, the equality A ⊗_max B = A ⊗_min B either implies, or is implied by, the equalities A ⊗_max C_i = A ⊗_min C_i for every i. These results can be applied to the setting of a discrete group G pre-ordered by a subsemigroup G⁺, where B ⊆ C*_r(G) is the subalgebra of the reduced group C*-algebra of G generated by G⁺, and C_i = A(Q_i) are digraph algebras defined by considering certain pre-ordered subsets Q_i of G. The 16-dimensional algebra A₄ of real sedenions is obtained by applying the Cayley-Dickson doubling process to the real division algebra of octonions. The classification of subalgebras of A₄ up to conjugacy (i.e. by the action of the automorphism group of A₄) was completed in a previous investigation, except for the collection of those subalgebras which are isomorphic to the quaternions. We present a classification of quaternion subalgebras up to conjugacy
    • …
    corecore