5 research outputs found

    Temporal viability regulation for control affine systems with applications to mobile vehicle coordination under time-varying motion constraints

    Full text link
    Controlled invariant set and viability regulation of dynamical control systems have played important roles in many control and coordination applications. In this paper we develop a temporal viability regulation theory for general dynamical control systems, and in particular for control affine systems. The time-varying viable set is parameterized by time-varying constraint functions, with the aim to regulate a dynamical control system to be invariant in the time-varying viable set so that temporal state-dependent constraints are enforced. We consider both time-varying equality and inequality constraints in defining a temporal viable set. We also present sufficient conditions for the existence of feasible control input for the control affine systems. The developed temporal viability regulation theory is applied to mobile vehicle coordination.Comment: 7 pages, 3 figures. Submitted to a conference for publicatio

    Occupational health and safety issues in human-robot collaboration: State of the art and open challenges

    Get PDF
    Human-Robot Collaboration (HRC) refers to the interaction of workers and robots in a shared workspace. Owing to the integration of the industrial automation strengths with the inimitable cognitive capabilities of humans, HRC is paramount to move towards advanced and sustainable production systems. Although the overall safety of collaborative robotics has increased over time, further research efforts are needed to allow humans to operate alongside robots, with awareness and trust. Numerous safety concerns are open, and either new or enhanced technical, procedural and organizational measures have to be investigated to design and implement inherently safe and ergonomic automation solutions, aligning the systems performance and the human safety. Therefore, a bibliometric analysis and a literature review are carried out in the present paper to provide a comprehensive overview of Occupational Health and Safety (OHS) issues in HRC. As a result, the most researched topics and application areas, and the possible future lines of research are identified. Reviewed articles stress the central role played by humans during collaboration, underlining the need to integrate the human factor in the hazard analysis and risk assessment. Human-centered design and cognitive engineering principles also require further investigations to increase the worker acceptance and trust during collaboration. Deepened studies are compulsory in the healthcare sector, to investigate the social and ethical implications of HRC. Whatever the application context is, the implementation of more and more advanced technologies is fundamental to overcome the current HRC safety concerns, designing low-risk HRC systems while ensuring the system productivity

    안전한 재구성 로봇 시스템: 설계, 프로그래밍 및 반응형 경로계획

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 기계항공공학부, 2020. 8. 박종우.The next generation of robots are being asked to work in close proximity to humans. At the same time, the robot should have the ability to change its topology to flexibly cope with various tasks. To satisfy these two requirements, we propose a novel modular reconfi gurable robot and accompanying software architecture, together with real-time motion planning algorithms to allow for safe operation in unstructured dynamic environments with humans. Two of the key innovations behind our modular manipulator design are a genderless connector and multi-dof modules. By making the modules connectable regardless of the input/output directions, a genderless connector increases the number of possible connections. The developed genderless connector can transmit as much load as necessary to an industrial robot. In designing two-dof modules, an offset between two joints is imposed to improve the overall integration and the safety of the modules. To cope with the complexity in modeling due to the genderless connector and multi-dof modules, a programming architecture for modular robots is proposed. The key feature of the proposed architecture is that it efficiently represents connections of multi-dof modules only with connections between modules, while existing architectures should explicitly represent all connections between links and joints. The data structure of the proposed architecture contains properties of tree-structured multi-dof modules with intra-module relations. Using the data structure and connection relations between modules, kinematic/dynamic parameters of connected modules can be obtained through forward recursion. For safe operation of modular robots, real-time robust collision avoidance algorithms for kinematic singularities are proposed. The main idea behind the algorithms is generating control inputs that increase the directional manipulability of the robot to the object direction by reducing directional safety measures. While existing directional safety measures show undesirable behaviors in the vicinity of the kinematic singularities, the proposed geometric safety measure generates stable control inputs in the entire joint space. By adding the preparatory input from the geometric safety measure to the repulsive input, a hierarchical collision avoidance algorithm that is robust to kinematic singularity is implemented. To mathematically guarantee the safety of the robot, another collision avoidance algorithm using the invariance control framework with velocity-dependent safety constraints is proposed. When the object approached the robot from a singular direction, the safety constraints are not satis ed in the initial state of the robot and the safety cannot be guaranteed using the invariance control. By proposing a control algorithm that quickly decreases the preparatory constraints below thresholds, the robot re-enters the constraint set and avoids collisions using the invariance control framework. The modularity and safety of the developed reconfi gurable robot is validated using a set of simulations and hardware experiments. The kinematic/dynamic model of the assembled robot is obtained in real-time and used to accurately control the robot. Due to the safe design of modules with o sets and the high-level safety functions with collision avoidance algorithms, the developed recon figurable robot has a broader safe workspace and wider ranger of safe operation speed than those of cooperative robots.다음 세대의 로봇은 사람과 가까이에서 협업할 수 있는 기능을 가져야한다. 그와 동시에, 로봇은 다양하게 변하는 작업에 대해 유연하게 대처할 수 있도록 자신의 구조를 바꾸는 기능을 가져야 한다. 이러한 두 가지 요구조건을 만족시키기 위해, 본 논문에서는 새로운 모듈라 로봇 시스템과 프로그래밍 아키텍쳐를 제시하고, 사람이 존재하는 동적 환경에서 안전한 로봇의 운용을 위한 실시한 경로 계획 알고리즘을 제시한다. 개발된 모듈라 로봇의 두 가지 핵심적인 혁신성은 무성별 커넥터와 다자유도 모듈에서 찾을 수 있다. 입력/출력 방향에 상관 없이 모듈이 연결될 수 있도록 함으로써, 무성별 커넥터는 결합 가능한 경우의 수를 늘릴 수 있다. 개발된 무성별 커넥터는 산업용 로봇에서 요구되는 충분한 부하를 견딜 수 있도록 설계되었다. 2 자유도 모듈의 설계에서 두 축 사이에 오프셋을 가지도록 함으로써 전체적인 완성도 및 안전도를 증가시켰다. 무성별 커넥터와 다자유도 모듈로 인한 모델링의 복잡성에 대응하기 위해, 일반적인 모듈라 로봇을 위한 소프트웨어 아키텍쳐를 제안하였다. 기존 모듈라 로봇의 연결을 나타내는 방법이 모든 링크와 조인트 사이의 연결 관계를 별도로 나타내야하는 것과 다르게, 제안된 아키텍쳐는 모듈들 사이의 연결관계만을 나타냄으로써 효율적인 다자유도 모듈의 연결관계를 나타낼 수 있다는 것을 특징으로 한다. 이를 위해 트리 구조를 가지는 일반적인 다자유도 모듈의 성질을 나타내는 데이터 구조를 정의하였다. 모듈들 사이의 연결관계 및 데이터 구조를 이용하여, 정확한 기구학/동역학 모델 파라미터를 얻어내는 순방향 재귀 알고리즘을 구현하였다. 모듈라 로봇의 안전한 운용을 위해, 기구학적 특이점에 강건한 실시간 충돌회피 알고리즘을 제안하였다. 방향성 안전도를 줄이는 방향의 제어 입력을 생성하여 물체 방향으로의 로봇 방향성 매니퓰러빌리티를 증가시키는 것이 제안한 알고리즘의 핵심이다. 기존의 방향성 안전도가 기구학적 특이점 근처에서 원하지 않는 성질을 가지는 것과는 반대로, 제안한 기하학적 안전도는 전체 조인트 공간에서 안정적인 제어 입력을 생성한다. 이 기하학적 안전도를 이용하여, 기구학적 특이점에 강건한 계층적 충돌회피 알고리즘을 구현하였다. 수학적으로 로봇의 안전도를 보장하기 위해, 상대속도에 종속적인 안전 제약조건을 가지는 불변 제어 프레임워크을 이용하여 또 하나의 충돌 회피 알고리즘을 제안하였다. 물체가 특이점 방향으로부터 로봇에 접근할 때, 로봇의 초기 상태에서 안전 제약조건을 만족시키지 못하게 되어 불변제어를 적용할 수 없게 된다. 준비 제약조건을 빠르게 임계점 아래로 감소시키는 알고리즘을 적용함으로써, 로봇은 제약조건 집합에 다시 들어가고 불변 제어 방법을 이용하여 충돌을 회피할 수 있게 된다. 개발된 재구성 로봇의 모듈라리티와 안전도는 일련의 시뮬레이션과 하드웨어 실험을 통해 검증되었다. 실시간으로 조립된 로봇의 기구학/동역학 모델을 얻어내 정밀 제어에 사용하였다. 안전한 모듈 디자인과 충돌 회피 등의 고차원 안전 기능을 통하여, 개발된 재구성 로봇은 기존 협동로봇보다 넓은 안전한 작업공간과 작업속도를 가진다.1 Introduction 1 1.1 Modularity and Recon gurability 1 1.2 Safe Interaction 4 1.3 Contributions of This Thesis 9 1.3.1 A Recon gurable Modular Robot System with Bidirectional Modules 9 1.3.2 A Modular Robot Software Programming Architecture 10 1.3.3 Anticipatory Collision Avoidance Planning 11 1.4 Organization of This Thesis 14 2 Design and Prototyping of the ModMan 17 2.1 Genderless Connector 18 2.2 Modules for ModMan 21 2.2.1 Joint Modules 21 2.2.2 Link and Gripper Modules 25 2.3 Experiments 26 2.3.1 System Setup 26 2.3.2 Repeatability Comparison with Non-recon gurable Robot Manipulators 28 2.3.3 E ect of the O set in Two-dof Modules 30 2.4 Conclusion 32 3 A Programming Architecture for Modular Recon gurable Robots 33 3.1 Data Structure for Multi-dof Joint Modules 34 3.2 Automatic Kinematic Modeling 37 3.3 Automatic Dynamic Modeling 40 3.4 Flexibility in Manipulator 42 3.5 Experiments 45 3.5.1 System Setup 46 3.5.2 Recon gurability 46 3.5.3 Pick-and-Place with Vision Sensors 48 3.6 Conclusion 49 4 A Preparatory Safety Measure for Robust Collision Avoidance 51 4.1 Preliminaries on Manipulability and Safety 52 4.2 Analysis on Reected Mass 56 4.3 Manipulability Control on S+(1;m) 60 4.3.1 Geometry of the Group of Positive Semi-de nite Matrices 60 4.3.2 Rank-One Manipulability Control 63 4.4 Collision Avoidance with Preparatory Action 65 4.4.1 Repulsive and Preparatory Potential Functions 65 4.4.2 Hierarchical Control and Task Relaxation 67 4.5 Experiments 70 4.5.1 Manipulability Control 71 4.5.2 Collision Avoidance 75 4.6 Conclusion 82 5 Collision Avoidance with Velocity-Dependent Constraints 85 5.1 Input-Output Linearization 87 5.2 Invariance Control 89 5.3 Velocity-Dependent Constraints for Robot Safety 90 5.3.1 Velocity-Dependent Repulsive Constraints 90 5.3.2 Preparatory Constraints 92 5.3.3 Corrective Control for Dangerous Initial State 93 5.4 Experiment 95 5.5 Conclusion 98 6 Conclusion 101 6.1 Overview of This Thesis 101 6.2 Future Work 104 Appendix A Appendix 107 A.1 Preliminaries on Graph Theory 107 A.2 Lie-Theoretic Formulations of Robot Kinematics and Dynamics 108 A.3 Derivatives of Eigenvectors and Eigenvalues 110 A.4 Proof of Proposition Proposition 4.1 111 A.5 Proof of Triangle Inequality When p = 1 114 A.6 Detailed Conditions for a Danger Field 115 Bibliography 117 Abstract 127Docto

    Invariance Control for Safe Human–Robot Interaction in Dynamic Environments

    No full text

    Models, algorithms and architectures for cooperative manipulation with aerial and ground robots

    Get PDF
    Les dernières années ont vu le développement de recherches portant sur l'interaction physique entre les robots aériens et leur environnement, accompagné de l'apparition de nombreux nouveaux systèmes mécaniques et approches de régulation. La communauté centrée autour de la robotique aérienne observe actuellement un déplacement de paradigmes des approches classiques de guidage, de navigation et de régulation vers des tâches moins triviales, telle le développement de l'interaction physique entre robots aériens et leur environnement. Ceci correspond à une extension des tâches dites de manipulation, du sol vers les airs. Cette thèse contribue au domaine de la manipulation aérienne en proposant un nouveau concept appelé MAGMaS, pour " Multiple Aerial Ground Manipulator System ". Les motivations qui ont conduites à l'association de manipulateurs terrestres et aériens pour effectuer des tâches de manipulation coopérative, résident dans une volonté d'exploiter leurs particularités respectives. Les manipulateurs terrestres apportant leur importante force et les manipulateurs aériens apportant leur vaste espace de travail. La première contribution de cette thèse présente une modélisation rigoureuse des MAGMaS. Les propriétés du système ainsi que ses possibles extensions sont discutées. Les méthodes de planning, d'estimation et de régulation nécessaire à l'exploitation des MAGMaS pour des tâches de manipulation collaborative sont dérivées. Ce travail propose d'exploiter les redondances des MAGMaS grâce à un algorithme optimal d'allocation de forces entre les manipulateurs. De plus, une méthode générale d'estimation de forces pour robots aériens est introduite. Toutes les techniques et les algorithmes présentés dans cette thèse sont intégrés dans une architecture globale, utilisée à la fois pour la simulation et la validation expérimentale. Cette architecture est en outre augmentée par l'addition d'une structure de télé-présence, afin de permettre l'opération à distances des MAGMaS. L'architecture générale est validée par une démonstration de levage de barre, qui est une application représentative des potentiels usages des MAGMaS. Une autre contribution relative au développement des MAGMaS consiste en une étude exploratoire de la flexibilité dans les objets manipulés par un MAGMaS. Un modèle du phénomène vibratoire est dérivé afin de mettre en exergue ses propriétés en termes de contrôle. La dernière contribution de cette thèse consiste en une étude exploratoire sur l'usage des actionneurs à raideur variable dans les robots aériens, dotant ces systèmes d'une compliance mécanique intrinsèque et de capacité de stockage d'énergie. Les fondements théoriques sont associés à la synthèse d'un contrôleur non-linéaire. L'approche proposée est validée par le biais d'expériences reposant sur l'intégration d'un actionneur à raideur variable léger sur un robot aérien.In recent years, the subject of physical interaction for aerial robots has been a popular research area with many new mechanical designs and control approaches being proposed. The aerial robotics community is currently observing a paradigm shift from classic guidance, navigation, and control tasks towards more unusual tasks, for example requesting aerial robots to physically interact with the environment, thus extending the manipulation task from the ground into the air. This thesis contributes to the field of aerial manipulation by proposing a novel concept known has Multiple Aerial-Ground Manipulator System or MAGMaS, including what appears to be the first experimental demonstration of a MAGMaS and opening a new route of research. The motivation behind associating ground and aerial robots for cooperative manipulation is to leverage their respective particularities, ground robots bring strength while aerial robots widen the workspace of the system. The first contribution of this work introduces a meticulous system model for MAGMaS. The system model's properties and potential extensions are discussed in this work. The planning, estimation and control methods which are necessary to exploit MAGMaS in a cooperative manipulation tasks are derived. This works proposes an optimal control allocation scheme to exploit the MAGMaS redundancies and a general model-based force estimation method is presented. All of the proposed techniques reported in this thesis are integrated in a global architecture used for simulations and experimental validation. This architecture is extended by the addition of a tele-presence framework to allow remote operations of MAGMaS. The global architecture is validated by robust demonstrations of bar lifting, an application that gives an outlook of the prospective use of the proposed concept of MAGMaS. Another contribution in the development of MAGMaS consists of an exploratory study on the flexibility of manipulated loads. A vibration model is derived and exploited to showcase vibration properties in terms of control. The last contribution of this thesis consists of an exploratory study on the use of elastic joints in aerial robots, endowing these systems with mechanical compliance and energy storage capabilities. Theoretical groundings are associated with a nonlinear controller synthesis. The proposed approach is validated by experimental work which relies on the integration of a lightweight variable stiffness actuator on an aerial robot
    corecore