21,180 research outputs found

    Linear motor motion control using a learning feedforward controller

    Get PDF
    The design and realization of an online learning motion controller for a linear motor is presented, and its usefulness is evaluated. The controller consists of two components: (1) a model-based feedback component, and (2) a learning feedforward component. The feedback component is designed on the basis of a simple second-order linear model, which is known to have structural errors. In the design, an emphasis is placed on robustness. The learning feedforward component is a neural-network-based controller, comprised of a one-hidden-layer structure with second-order B-spline basis functions. Simulations and experimental evaluations show that, with little effort, a high-performance motion system can be obtained with this approach

    A Stability Analysis for the Acceleration-based Robust Position Control of Robot Manipulators via Disturbance Observer

    Full text link
    This paper proposes a new nonlinear stability analysis for the acceleration-based robust position control of robot manipulators by using Disturbance Observer (DOb). It is shown that if the nominal inertia matrix is properly tuned in the design of DOb, then the position error asymptotically goes to zero in regulation control and is uniformly ultimately bounded in trajectory tracking control. As the bandwidth of DOb and the nominal inertia matrix are increased, the bound of error shrinks, i.e., the robust stability and performance of the position control system are improved. However, neither the bandwidth of DOb nor the nominal inertia matrix can be freely increased due to practical design constraints, e.g., the robust position controller becomes more noise sensitive when they are increased. The proposed stability analysis provides insights regarding the dynamic behavior of DOb-based robust motion control systems. It is theoretically and experimentally proved that non-diagonal elements of the nominal inertia matrix are useful to improve the stability and adjust the trade-off between the robustness and noise sensitivity. The validity of the proposal is verified by simulation and experimental results.Comment: 9 pages, 9 figures, Journa

    Wide-Angle Foveation for All-Purpose Use

    Get PDF
    This paper proposes a model of a wide-angle space-variant image that provides a guide for designing a fovea sensor. First, an advanced wide-angle foveated (AdWAF) model is formulated, taking all-purpose use into account. This proposed model uses both Cartesian (linear) coordinates and logarithmic coordinates in both planar projection and spherical projection. Thus, this model divides its wide-angle field of view into four areas, such that it can represent an image by various types of lenses, flexibly. The first simulation compares with other lens models, in terms of image height and resolution. The result shows that the AdWAF model can reduce image data by 13.5%, compared to a log-polar lens model, both having the same resolution in the central field of view. The AdWAF image is remapped from an actual input image by the prototype fovea lens, a wide-angle foveated (WAF) lens, using the proposed model. The second simulation compares with other foveation models used for the existing log-polar chip and vision system. The third simulation estimates a scale-invariant property by comparing with the existing fovea lens and the log-polar lens. The AdWAF model gives its planar logarithmic part a complete scale-invariant property, while the fovea lens has 7.6% error at most in its spherical logarithmic part. The fourth simulation computes optical flow in order to examine the unidirectional property when the fovea sensor by the AdWAF model moves, compared to the pinhole camera. The result obtained by using a concept of a virtual cylindrical screen indicates that the proposed model has advantages in terms of computation and application of the optical flow when the fovea sensor moves forward

    Mechatronic Design: A Port-Based Approach

    Get PDF
    In this paper we consider the integrated design of a mechatronic system. After considering the different design steps it is shown that a port-based approach during all phases of the design supports a true mechatronic design philosophy. Port-based design enables use of consistent models of the system throughout the design process, multiple views in different domains and reusability of plant models, controller components and software processes. The ideas are illustrated with the conceptual and detailed design of a mobile robot

    'Constant in gain Lead in phase' element - Application in precision motion control

    Full text link
    This work presents a novel 'Constant in gain Lead in phase' (CgLp) element using nonlinear reset technique. PID is the industrial workhorse even to this day in high-tech precision positioning applications. However, Bode's gain phase relationship and waterbed effect fundamentally limit performance of PID and other linear controllers. This paper presents CgLp as a controlled nonlinear element which can be introduced within the framework of PID allowing for wide applicability and overcoming linear control limitations. Design of CgLp with generalized first order reset element (GFORE) and generalized second order reset element (GSORE) (introduced in this work) is presented using describing function analysis. A more detailed analysis of reset elements in frequency domain compared to existing literature is first carried out for this purpose. Finally, CgLp is integrated with PID and tested on one of the DOFs of a planar precision positioning stage. Performance improvement is shown in terms of tracking, steady-state precision and bandwidth

    Innovation and failure in mechatronics design education

    Get PDF
    Innovative engineering design always has associated with it the risk of failure, and it is the role of the design engineer to mitigate the possibilities of failure in the final system. Education should however provide a safe space for students to both innovate and to learn about and from failures. However, pressures on course designers and students can result in their adopting a conservative, and risk averse, approach to problem solving. The paper therefore considers the nature of both innovation and failure, and looks at how these might be effectively combined within mechatronics design education

    Hybrid Systems and Control With Fractional Dynamics (I): Modeling and Analysis

    Full text link
    No mixed research of hybrid and fractional-order systems into a cohesive and multifaceted whole can be found in the literature. This paper focuses on such a synergistic approach of the theories of both branches, which is believed to give additional flexibility and help to the system designer. It is part I of two companion papers and introduces the fundamentals of fractional-order hybrid systems, in particular, modeling and stability analysis of two kinds of such systems, i.e., fractional-order switching and reset control systems. Some examples are given to illustrate the applicability and effectiveness of the developed theory. Part II will focus on fractional-order hybrid control.Comment: 2014 International Conference on Fractional Differentiation and its Application, Ital
    • 

    corecore