300,962 research outputs found

    A prĂŠcis of philosophy of computing and information technology

    Get PDF
    The authors recently finished a comprehensive chapter on “Philosophy of Computing and Information Technology” for the forthcoming (fall 2009) Philosophy of Technology and Engineering Sciences (Ed.: A. Meijers), Volume IX in the Elsevier series Handbook of the Philosophy of Science (Eds.: D. Gabbay, P. Thagard and J. Woods). The purpose of the chapter is to review and discuss the main developments, concepts, topics, and contributors in the intersection between philosophy and computing, as well as provide some suggestions on how to structure the many subcategories within what is loosely referred to as philosophy of computing. In this short synopsis, we will give an outline of the kinds of issues raised in this chapter

    Scaling the Management of Extreme Programming Projects

    Full text link
    XP is a code-oriented, light-weight software engineering methodology, suited merely for small-sized teams who develop software that relies on vague or rapidly changing requirements. Being very code-oriented, the discipline of systems engineering knows it as approach of incremental system change. In this contribution, we discuss the enhanced version of a concept on how to extend XP on large scale projects with hundreds of software engineers and programmers, respectively. Previous versions were already presented in [1] and [12]. The basic idea is to apply the "hierarchical approach", a management principle of reorganizing companies, as well as well-known moderation principles to XP project organization. We show similarities between software engineering methods and company reorganization processes and discuss how the elements of the hierarchical approach can improve XP. We provide guidelines on how to scale up XP to very large projects e.g. those common in telecommunication industry and IT technology consultancy firms by using moderation techniques.Comment: 7 pages, 4 figure

    Traceability for Model Driven, Software Product Line Engineering

    Get PDF
    Traceability is an important challenge for software organizations. This is true for traditional software development and even more so in new approaches that introduce more variety of artefacts such as Model Driven development or Software Product Lines. In this paper we look at some aspect of the interaction of Traceability, Model Driven development and Software Product Line

    Ten virtues of structured graphs

    Get PDF
    This paper extends the invited talk by the first author about the virtues of structured graphs. The motivation behind the talk and this paper relies on our experience on the development of ADR, a formal approach for the design of styleconformant, reconfigurable software systems. ADR is based on hierarchical graphs with interfaces and it has been conceived in the attempt of reconciling software architectures and process calculi by means of graphical methods. We have tried to write an ADR agnostic paper where we raise some drawbacks of flat, unstructured graphs for the design and analysis of software systems and we argue that hierarchical, structured graphs can alleviate such drawbacks

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
    • …
    corecore