56,722 research outputs found

    A probabilistic justification for using tf.idf term weighting in information retrieval

    Get PDF
    This paper presents a new probabilistic model of information retrieval. The most important modeling assumption made is that documents and queries are defined by an ordered sequence of single terms. This assumption is not made in well known existing models of information retrieval, but is essential in the field of statistical natural language processing. Advances already made in statistical natural language processing will be used in this paper to formulate a probabilistic justification for using tf.idf term weighting. The paper shows that the new probabilistic interpretation of tf.idf term weighting might lead to better understanding of statistical ranking mechanisms, for example by explaining how they relate to coordination level ranking. A pilot experiment on the TREC collection shows that the linguistically motivated weighting algorithm outperforms the popular BM25 weighting algorithm

    Disambiguation strategies for cross-language information retrieval

    Get PDF
    This paper gives an overview of tools and methods for Cross-Language Information Retrieval (CLIR) that are developed within the Twenty-One project. The tools and methods are evaluated with the TREC CLIR task document collection using Dutch queries on the English document base. The main issue addressed here is an evaluation of two approaches to disambiguation. The underlying question is whether a lot of effort should be put in finding the correct translation for each query term before searching, or whether searching with more than one possible translation leads to better results? The experimental study suggests that the quality of search methods is more important than the quality of disambiguation methods. Good retrieval methods are able to disambiguate translated queries implicitly during searching

    1st INCF Workshop on NeuroImaging Database Integration

    Get PDF
    The goal of this meeting was to map existing neuroimaging databases, particularly databases containing primary data, and to identify mechanisms that could facilitate integrated use of such databases, including possible fusion of databases. The report provides an overview of existing neuroimaging databases that were discussed during the workshop and examines the feasibility of database federations. The report includes several recommendations for future developments

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency
    • …
    corecore