17,927 research outputs found

    DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car

    Full text link
    We present DeepPicar, a low-cost deep neural network based autonomous car platform. DeepPicar is a small scale replication of a real self-driving car called DAVE-2 by NVIDIA. DAVE-2 uses a deep convolutional neural network (CNN), which takes images from a front-facing camera as input and produces car steering angles as output. DeepPicar uses the same network architecture---9 layers, 27 million connections and 250K parameters---and can drive itself in real-time using a web camera and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we analyze the Pi 3's computing capabilities to support end-to-end deep learning based real-time control of autonomous vehicles. We also systematically compare other contemporary embedded computing platforms using the DeepPicar's CNN-based real-time control workload. We find that all tested platforms, including the Pi 3, are capable of supporting the CNN-based real-time control, from 20 Hz up to 100 Hz, depending on hardware platform. However, we find that shared resource contention remains an important issue that must be considered in applying CNN models on shared memory based embedded computing platforms; we observe up to 11.6X execution time increase in the CNN based control loop due to shared resource contention. To protect the CNN workload, we also evaluate state-of-the-art cache partitioning and memory bandwidth throttling techniques on the Pi 3. We find that cache partitioning is ineffective, while memory bandwidth throttling is an effective solution.Comment: To be published as a conference paper at RTCSA 201

    Hazard Contribution Modes of Machine Learning Components

    Get PDF
    Amongst the essential steps to be taken towards developing and deploying safe systems with embedded learning-enabled components (LECs) i.e., software components that use ma- chine learning (ML)are to analyze and understand the con- tribution of the constituent LECs to safety, and to assure that those contributions have been appropriately managed. This paper addresses both steps by, first, introducing the notion of hazard contribution modes (HCMs) a categorization of the ways in which the ML elements of LECs can contribute to hazardous system states; and, second, describing how argumentation patterns can capture the reasoning that can be used to assure HCM mitigation. Our framework is generic in the sense that the categories of HCMs developed i) can admit different learning schemes, i.e., supervised, unsupervised, and reinforcement learning, and ii) are not dependent on the type of system in which the LECs are embedded, i.e., both cyber and cyber-physical systems. One of the goals of this work is to serve a starting point for systematizing L analysis towards eventually automating it in a tool

    Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks

    Full text link
    The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.Comment: Transport Reviews, 201
    corecore