26 research outputs found

    Simulation modelling software approaches to manufacturing problems

    Get PDF
    Increased competition in many industries has resulted in a greater emphasis on developing and using advanced manufacturing systems to improve productivity and reduce costs. The complexity and dynamic behaviour of such systems, make simulation modelling one of the most popular methods to facilitate the design and assess operating strategies of these systems. The growing need for the use of simulation is reflected by a growth in the number of simulation languages and data-driven simulators in the software market. This thesis investigates which characteristics typical manufacturing simulators possess, and how the user requirements can be better fulfilled. For the purpose of software evaluation, a case study has been carried out on a real manufacturing system. Several simulation models of an automated system for electrostatic powder coating have been developed using different simulators. In addition to the evaluation of these simulators, a comprehensive evaluation framework has been developed to facilitate selection of simulation software for modelling manufacturing systems. Different hierarchies of evaluation criteria have been established for different software purposes. In particular, the criteria that have to be satisfied for users in education differ from those for users in industry. A survey has also been conducted involving a number of users of software for manufacturing simulation. The purpose of the survey was to investigate users' opinions about simulation software, and the features that they desire to be incorporated in simulation software. A methodology for simulation software selection is also derived. It consists of guidelines related to the actions to be taken and factors to be considered during the evaluation and selection of simulation software. On the basis of all the findings, proposals on how manufacturing simulators can be improved are made, both for use in education and in industry. These software improvements should result in a reduction in the amount of time and effort needed for simulation model development, and therefore make simulation more beneficial

    A CRITICAL STUDY AND COMPARISON OF MANUFACTURING SIMULATION SOFTWARES USING ANALYTIC HIERARCHY PROCESS

    Get PDF
    In a period of continuous change in global business environment, organizations, large and small, are finding it increasingly difficult to deal with, and adjust to the demands for such change. Simulation is a powerful tool for allowing designers imagines new systems and enabling them to both quantify and observe behavior. Currently the market offers a variety of simulation software packages. Some are less expensive than others. Some are generic and can be used in a wide variety of application areas while others are more specific. Some have powerful features for modeling while others provide only basic features. Modeling approaches and strategies are different for different packages. Companies are seeking advice about the desirable features of software for manufacturing simulation, depending on the purpose of its use. Because of this, the importance of an adequate approach to simulation software evaluation and comparison is apparent. This paper presents a critical evaluation of four widely used manufacturing simulators: NX-IDEAS, Star-CD, Micro Saint Sharp and ProModel. Following a review of research into simulation software evaluation, an evaluation and comparison of the above simulators is performed. This paper illustrates and assesses the role the Analytic Hierarchy Process (AHP) played in simulation software evaluation and selection. The main purpose of this evaluation and comparison is to discover the suitability of certain types of simulators for particular purposes

    Construction time-cost model in Croatia

    Get PDF
    The paper deals with the applicability of the time-cost model for calculating the sustainable construction time for building projects in Croatia. In this model the time is expressed as a function of money in the project, while the specific constants K and B need to be determined. These constants depend on economic characteristics of the country or a larger area, therefore had to be separately calculated for a region with similar economic characteristics. The modelling of the constants was performed for two groups of building projects - the roads and residential and office multi-storey buildings. The obtained results have been analyzed and compared to the corresponding results from abroad

    A critical evaluation and comparison of four manufacturing simulators using analytic hierarchy process

    Get PDF
    In the period of continuous change in global business environment, organizations, large and small, are finding it increasingly difficult to deal with, and adjust to the demands for such change. Simulation is a powerful tool for allowing designers imagine new systems and for enabling them to both quantify and to observe behaviour. Currently the market offers a variety of simulation software packages. Some are less expensive than others. Some are generic and can be used in a wide variety of application areas while others are more specific. Some have powerful features for modelling while others provide only basic features. Modelling approaches and strategies are different for different packages. Companies are seeking advice about the desirable features of software to manufacture simulation, depending on the purpose of its use. Because of this, the importance of an adequate approach to simulation software evaluation and comparison is apparent. This paper presents a critical evaluation of four widely used manufacturing simulators: NX-IDEAS, Star-CD, Micro Saint Sharp and ProModel. Following a review of research into simulation software evaluation, an evaluation and comparison of the above simulators is performed. This paper illustrates and assesses the role the Analytic Hierarchy Process (AHP) played in simulation software evaluation and selection. The main purpose of this evaluation and comparison is to discover the suitability of certain types of simulators for particular purposes

    Neutron Star instabilities in full General Relativity using a Ī“=2.75\Gamma=2.75 ideal fluid

    Full text link
    We present results about the effect of the use of a stiffer equation of state, namely the ideal-fluid Ī“=2.75\Gamma=2.75 ones, on the dynamical bar-mode instability in rapidly rotating polytropic models of neutron stars in full General Relativity. We determine the change on the critical value of the instability parameter Ī²\beta for the emergence of the instability when the adiabatic index Ī“\Gamma is changed from 2 to 2.75 in order to mimic the behavior of a realistic equation of state. In particular, we show that the threshold for the onset of the bar-mode instability is reduced by this change in the stiffness and give a precise quantification of the change in value of the critical parameter Ī²c\beta_c. We also extend the analysis to lower values of Ī²\beta and show that low-beta shear instabilities are present also in the case of matter described by a simple polytropic equation of state.Comment: 16 pages, 16 figure

    Development of a standard framework for manufacturing simulators

    Get PDF
    Discrete event simulation is now a well established modelling and experimental technique for the analysis of manufacturing systems. Since it was first employed as a technique, much of the research and commercial developments in the field have been concerned with improving the considerable task of model specification in order to improve productivity and reduce the level of modelling and programming expertise required. The main areas of research have been the development of modelling structures to bring modularity in program development, incorporating such structures in simulation software systems which would alleviate some of the programming burden, and the use of automatic programming systems to develop interfaces that would raise the model specification to a higher level of abstraction. A more recent development in the field has been the advent of a new generation of software, often referred to as manufacturing simulators, which have incorporated extensive manufacturing system domain knowledge in the model specification interface. Many manufacturing simulators are now commercially available, but their development has not been based on any common standard. This is evident in the differences that exist between their interfaces, internal data representation methods and modelling capabilities. The lack of a standard makes it impossible to reuse any part of a model when a user finds it necessary to move from one simulator to another. In such cases, not only a new modelling language has to be learnt but also the complete model has to be developed again requiring considerable time and effort. The motivation for the research was the need for the development of a standard that is necessary to improve reusability of models and is the first step towards interchangability of such models. A standard framework for manufacturing simulators has been developed. It consists of a data model that is independent of any simulator, and a translation module for converting model specification data into the internal data representation of manufacturing simulators; the translators are application specific, but the methodology is common and illustrated for three popular simulators. The data model provides for a minimum common model data specification which is based on an extensive analysis of existing simulators. It uses dialogues for interface and the frame knowledge representation method for modular storage of data. The translation methodology uses production rules for data mapping

    Hybrid modelling methodology for system design

    Get PDF
    In the face of rapid development in information technology coupled with a growing dynamism in global markets, manufacturing systems have to be re-constructed for short term or long term goal. Such innovations promise to lead to a new competitive stage, which typically involve design of function, information and behaviour of systems. In order to design the system, simulation has often been chosen. However, simulation has proved limited and fails to aid design of such a complex systems because of consuming much computing time and cost, especially when modelling larger systems. Thus, there is a need to seek a new approach, in a way that results in simulating such a large manufacturing system with less demand on computing time and cost. This study researches into a hybrid modelling approach to minimise these limitations. It includes proposing a hybrid modelling methodology and developing a hybrid modelling tool. The methodology integrates simulation and metamodelling techniques. The metamodel employed in the study possesses, not only characteristics of conventional metamodels in terms of representing relationships in quantity, but also in time lapse. This is the originality of the study and the significant distinction between this research and application of metamodelling in conventional ways. The hybrid modelling tool is developed to support and demonstrate the identified hybrid methodology. LISP has been used as the software language for the hybrid modelling tool. The result of this work concludes that the hybrid modelling approach is capable of simulating a complex manufacturing system with less demands on the computer. The work reported in this thesis has been carried out in conjunction with the EPSRC research project, Hierarchical Manufacturing System Modelling (HMSM) (GR/F96549), to produce an Integrated Design and Modelling Methodology (IDEM). The project was initially a collaborative research program including Loughborough University of Technology (LUT), Morris Crane Ltd., of Loughborough and GEC Large Machine, of Rugby. The experience of these collaborators has proved most valuable in supporting the research, and have provided a cross section of views and comments. The research reported in this thesis is set in the context of the HMSM Research group at Loughborough

    USING QUERY-DRIVEN SIMULATIONS FOR QUERYING OUTCOMES OF BUSINESS PROCESSES

    Get PDF
    When decision makers want to know outcomes of business processes in their organizations, they often use simulations to do this. This paper describes how a new Query-Driven Simulation (QDS) approach can be used by decision makers to obtain information about future outcomes of business processes in a more declarative, flexible, and interactive way than the traditional approach of running simulations and then gathering statistics about simulation outcomes. The paper also describes the types of questions decision makers ask about outcomes of business processes and studies how easy it is to express these questions in terms of an SQL-like query language SimQL designed for Query-Driven Simulations. It also identifies the types of applications that are especially well-suited for QDS. Finally, the paper describes the Query-Driven Simulation Modeling Lifecycle and how QDS provides a feedback loop in the model development process.Information Systems Working Papers Serie

    AN INVESTIGATION INTO PRODUCT DESIGN AND PRODUCTION TECHNIQUES WITHIN A JUST-IN-TIME MANUFACTURING ENVIRONMENT

    Get PDF
    This thesis describes the implementation of a Just-in-Time (JIT) cell on a greenfield site. It concentrates on a before and after implementation situation. Various production parameters are analysed to compare flowline performance before and after the implementation of JIT. The study is primarily concerned with the philosophies behind the Japanese management style of JIT and the practical use of JIT in a relatively small production line. Each area of JIT and its associated components are studied and, where practical, executed into practice within the production line. The study includes an investigation of the present manufacturing system and recommends improvements to aid manufacturing output. Total Quality Control, Set-up Reduction, Group Technology, Kanban, Failure Mode and Effects Analysis and Value Analysis are tools used to assist the formation of the JIT cell. Results taken after implementation revealed that stock levels reduced by 25%. Shop floor area was reduced by 205 square metres and lead time reduced by 33%. Large arrears in orders were virtually eliminated six weeks after implementation. Warranty claims were greatly reduced. Quality Management greatly enhanced the product and cross-training of operatives was achieved.Tecalemit Systems Limite

    The co-incident flow of work pieces and cutting tools in a restricted category of flexible machining cells

    Get PDF
    The work reported in this thesis describes research carried out into the detailed design and operation of Flexible Machining Cells (FMC) incorporating automated work and tool flow, dual flow. Three modes of cell management are considered for dual flow cells, where the author examines both their operational and economic performance. A framework is defined for investigating these dual flow cells, and a structured approach providing a novel and detailed modelling capability is described. The question of how this approach compares to single flow modelling and the additional or alternative requirements for dual flow modelling is examined via the following key areas; the specification of material handling requirements, tool transportation and issue and finally, the control required to examine the interaction between the two flows operating concurrently. The framework is tested for its industrial applicability via an industrial case study. A major aim of this study is to examine the view that a hybrid cell management strategy, competitive management, could outperform the other strategies examined. The aim of this methodology is to provide a solution for the control of FMCs. Emphasis is placed on the ease of control and how the loading and control rules selection can maximise economic enhancement of a cells performance
    corecore