

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

HYBRID MODELLING METHODLOGY
FOR SYSTEM DESIGN

By

Bing Yu

A Doctoral Thesis
Submitted in partial fulfilment of the requirements

for the award of
Doctor of Philosophy

of the Loughborough University of Technology

May 1995

Department of Manufacturing Engineering

© Copyright by Bing Yu 1995

BEST COPY

AVAILABLE

Variable print quality

PAGE
NUMBERS
CUT OFF

IN
ORIGINAL

To My Parents and My Sister's Family
For Their Love, Support and Encouragement

Acknowledgement

I would like to express my sincere gratitude to my research supervisor, Dr. K. Popplewell,

for his guidance, encouragement and interest in this work. I would also like to give my

thanks to Professor R. Bell for his support and help. Without this support, I would not

stay here to finish my research work.

I would like to thank Mrs. J. Harding for her help. Appreciation is extended to Mr. T.

Deave for his useful discussion and great help in my case study.

Finally, I wish to express my love and appreciation to my family and friends for their

support, encouragement and friendship throughout the period of my study.

Synopsis

In the face of rapid development in information technology coupled with a growing
dynamism in global markets, manufacturing systems have to be re-constructed for

short term or long term goal. Such innovations promise to lead to a new competitive
stage, which typically involve design of function, information and behaviour of
systems. In order to design the system, simulation has often been chosen. However,

simulation has proved limited and fails to aid design of such a complex systems
because of consuming much computing time and cost, especially when modelling
larger systems. Thus, there is a need to seek a new approach, in a way that results in

simulating such a large manufacturing system with less demand on computing time and
cost.

This study researches into a hybrid modelling approach to minimise these limitations. It
includes proposing a hybrid modelling methodology and developing a hybrid modelling
tool. The methodology integrates simulation and metamodelling techniques. The

metamodel employed in the study possesses, not only characteristics of conventional
metamodels in terms of representing relationships in quantity, but also in time lapse.
This is the originality of the study and the significant distinction between this research
and application of metamodelling in conventional ways. The hybrid modelling tool is
developed to support and demonstrate the identified hybrid methodology. LISP has
been used as the software language for the hybrid modelling tool. The result of this

work concludes that the hybrid modelling approach is capable of simulating a complex
manufacturing system with less demands on the computer.

The work reported in this thesis has been carried out in conjunction with the EPSRC

research project, Hierarchical Manufacturing System Modelling (HMSM)
(GR/F96549), to produce an Integrated Design and Modelling Methodology (IDEM).
The project was initially a collaborative research program including Loughborough
University of Technology (LUT), Morris Crane Ltd., of Loughborough and GEC
Large Machine, of Rugby. The experience of these collaborators has proved most
valuable in supporting the research, and have provided a cross section of views and
comments. The research reported in this thesis is set in the context of the HMSM
Research group at Loughborough.

Table of Content

Contents

Declaration

Acknowledgement

Synopsis

Contents

Chapter 1 Introduction 1

Chapter 2 Scope of the Research

2.1 Introduction 6

2.2 Description of the Problem 6

2.3 Research Objectives 9

2.3.1 Research Approach 10

2.3.2 Case Study 11

Chapter 3 Literature Review

3.1 Introduction 13

3.2 Factory Design 13

3.2.1 Concept of Factory 14

3.2.2 Dynamic Performance and Measurements 16

3.3 System Design Methodologies 17

3.4 Discrete Event Simulation 27

3.4.1 Simulation Language and Simulator 28

3.4.2 Knowledge Based Simulation 30

3.4.3 Simulation Validation 31

3.5 Metamodelling 33

3.5.1 Validation of Metamodel 35

3.6 Time Series Approach 37

Table of Content

3.7 Evaluation of Statistical Software

Chapter 4 Background

4.1 Introduction

4.2 The HMSM Project

4.2.1 IDEM methodology

4.2.2 DEM tool

4.3 Relationship Between the Project and the Research

Chapter 5 Hybrid Methodology

5.1 Introduction

5.2 Overview of Major Tasks

5.3 Simulation Model

5.3.1 Mechanism in IDEM Simulation

5.3.2 Function of An IDEM Box vs. Function of A Detailed

Modelling Page

5.4 Embedding a Metamodel in Simulation

5.4.1 Requirement of Embedding Metamodel in Simulation

Environment

5.4.2 Requirement of Embedding Metamodel in IDEM

Simulation Environment

5.5 Metamodel

5.5.1 General Regression Metamodel

5.5.2 Metamodel Validation

5.5.2.1 Metamodel Validation Method

5.5.2.2 Statistical Test

5.5.3 Characteristics of the Metamodel

Chapter 6 Implementation

6.1 Introduction

6.2 Aims of Implementation Work

6.3 Implementation Environment

38

41

42

42

47

52

54

54

58

61

63

66

67

68

70

70

74

74

74

77

80

81

82

Table of Content

6.3.1 Experimental Software Development Environment 82

6.3.2 Metamodel Development Environment 83

6.3.2.1 Zoom Node Library 84

6.3.2.2 Zoom Node Specialisation 87

6.4 Implementation of Hybrid Methodology 90

6.4.1 Implementation of Metamodel 90

6.4.1.1 The Features of the Data Collector 90

6.4.1.2 Data Collector Implementation 92

6.4.1.3 The Features of the Metamodel Generator 93

6.4.1.4 Implementation of Metamodel Generator 93

6.4.1.5 Metamodel Validation 94

6.4.2 Implementation of Hybrid Model 96

6.4.2.1 The Features of the Metamodel Box 96

6.4.2.2 Implementation of Metamodel Box 102

6.4.3 Interface Customization 106

6.5 Experimental Application of Embedding Metamodel 109

6.5.1 Design for One Input and One Output Simulation

Scenario in Zoom-In Paradigm 110

6.5.2 Design for Multiple Inputs and One Output Simulation

Scenario in Zoom-In Paradigm 113

6.5.3 Design for Multiple Input and Multiple Outputs

Simulation Scenario in Zoom-In Paradigm 117

Chapter 7 Case Study

7.1 Introduction 120

7.2 The Company Description 120

7.2.1 Operation of the Company 121

7.2.2 Products and Production Procedures 122

7.3 The Case Study 124

7.3.1 Problem Tackled 124

7.3.2 The Description of Production Function 125

7.4 Experiment Approach 125

7.4.1 Simulation Modelling

Table of Content

126

7.4.2 Metamodelling

7.5 The Results of Case Study

7.5.1 Simulation Model Representation

7.5.2 Development of Metamodel

7.5.3 Validation of the Simulation Model and the Metamodel

7.5.4 Hybrid Model vs. Simulation Model

7.6 Case Study Experiences

7.7 Conclusion

Chapter 8 Evaluation and Discussion

8.1 Introduction

8.2 Achievements of the Research

8.3 Limitation of the Research

8.4 Discussion

Chapter 9 Conclusion

9.1 Introduction

9.2 Original Contribution

9.3 Summary of the Research Results

9.4 Further work

9.5 Conclusion

Reference

Appendix

I Object Oriented Technique

II Metamodelling Program

131

132

132

141

142

144

145

146

148

148

149

151

154

154

154

155

156

Chapter 1: Introduction

Chapter 1

INTRODUCTION

To keep pace with global competition, manufacturers endeavour to increase their

factory competitive capability. This involves not only to improve the end products but

also to rethink the organisational structure which is used to manufacture the products.

The organizational structure is influenced by both technologies and manufacturing

strategies applied. When new manufacturing strategies are investigated from time to

time, there is a need to explore organizational structure of manufacturing systems in

both static and dynamic states (Cook, 1991).

The complexity of the manufacturing systems arises from many directions: the inter-

dependence of elements of the systems, the influences of external forces and the lack of

predictability to the consequences of actions. Because of the complexity of the

manufacturing systems, it is difficult to identify the critical influence affecting the

strategic direction. Many aspects have to be considered and tested before a strategic

direction can be taken. Obviously, it is not realistic to test all possibility of new

proposals in actual system because of cost and time invovled. In order to do so, a

model is used. Traditionally, operational research methods are adopted to construct a

model. However, it is very difficult and sometimes even impossible to build a model

with the methods when the object is a complex system like a manufacturing system.

Because a) getting a reliable and accurate model requires large volume of reliable data,

b) it is hard to calculate when many variables and interaction are involved. Hence,

i

Chapter 1: Introduction

computer simulation is considered a fast and cost-effective alternative which is used to

test various strategic directions of a manufacturing system to satisfy the objectives of

corporations.

Current simulation packages, however, are restricted at either lower level modelling,

such as at cell or station level, or a description of the performance of the whole factory

in a static way rather than a dynamic one. Hence, there is a strong need for a multi-

level modelling technique to be developed. It should provide fast and approximate

modelling to discover what is necessary in order to modify the current performance of

the whole factory and to achieve the desired manufacturing strategy. Due to this

requirement the project, Hiexarchical Manufacturing System Modelling (HMSM), was

Proposed.

The HMSM project offers a new multi-level modelling method. It also provides an

associated tool -Integrated DEsign and Modelling (IDEM)-by which a factory model

can be built approximately and extended to investigate detailed operations. Like any

other simulation package, because IDEM generates results by performing many

iterations of a set of variables, this package requires enormous computer power.

Though computer technology has been improved dramatically both in memory and

speed, it is still a mammoth task to model a system such as a manufacturing one. Thus,

it is necessary to add metamodelling techniques to enhance the capability of IDEM

tool

The main subject of this thesis is, therefore, to develop a tool which integrates

2

Chapter 1: Introduction

simulation and metamodelling techniques to be able to model complicated

manufacturing systems.

The thesis is arranged into nine chapters including this introduction. Its structure is

shown in Figure 1.1. An overview of each chapter is listed as follows:

Chapter 2 states the scope of the research. It identifies the research objective. In order

to help the user to understand this research objective, the problem is described briefly.

Finally, a description of the research approach is discussed. In order to understand the

objectives better, this chapter is related to chapters 3 and 4 which provide the literature

and technical background.

Chapter 3 begins with an extensive literature review of areas related to this research

work. These are system design and analysis methods, discrete event simulation, and

metamodelling. These methodologies are also related to practical applications. In

addition, the time serial method is discussed.

Chapter 4 gives the reader the background to the research of the HMSM project. It

contains the objectives of the project, the methodology and the IDEM tool developed

in the project. The user should then be able to understand the simulation environment

where the metamodel is going to be developed and where metamodel replacement

takes place.

Chapter 5 explains the theory of the research. The major tasks are reviewed to refresh

3

Chapter 1: Introduction

and emphasise the domain of the research. This is followed by analysing the principle

of the simulation. This leads to reveal the philosophy of embedding a metamodel in a

simulation. Then, the requirements are identified and illustrated, which is essential for

embedding metamodel in a simulation environment. Finally, the methods which have

been employed for creating and validating a metamodel are examined theoretically.

Chapter 6 is devoted to the implementation of the hybrid methodology. To understand

the development of the experimental software, the implementation environment is

depicted first. Thereafter the implementation is illustrated through generating

metamodel, the interacting metamodel and replacing the simulation model. It contains

rather simple examples of implementation in order to illustrate the experimental

software implementation clearly.

Chapter 7 is a case study. In the beginning of this chapter, the industrial company is

introduced briefly. Its simulation model and hybrid model are then described. The

results of the study are illustrated at the end of the chapter.

Chapter 8 summarises the research work. The achievements of the study are

addressed, and limitations of the work are also discussed.

Finally, key issues of the research work are concluded in chapter 9. Recommendations

for possible further research are also presented.

4

a

i
v

I

v

b

v

h

i v

a

v

v

$

v

I

. nr
I

. Ci

O

Lp

bD
ý: r

Chapter 2: Scope of Research

Chapter 2

SCOPE OF RESEARCH

2.1 Introduction

This chapter presents the objectives of the research on the integration of both

metamodelling and simulation techniques in the modelling of factory system design.

Initially, it outlines the problems. Then, the objectives and the research approach are

illustrated respectively.

2.2 Description of the Problem

To achieve a competitive edge in the world-wide marketplace, many companies have

to adjust both their business objectives and the organisation structure so that the

business strategy can be executed and accomplished. In the new manufacturing

environment, the long term management objectives are profitability, increased

manufacturing flexibility, product innovation and lead time reduction. In pursuing the

goal, many companies adopt advanced techniques and a new control mode such as Just

In Time (ill) and Total Quality Control (TQC). Although some of them are successful

in improving partial performance of a manufacturing system, the majority fail to

improve their market position as expected (Hanson, 1992). Therefore the problem of

how to design and analyse an overaU system has arisen in the research field. Evidently,

there is a strong need for a factory design tool which can investigate business strategy

6

Chapter 2: Scope of Research

and manufacturing strategy mutually, and reveal the system behaviour in its totality.

In order to investigate the impact of different strategies operated in an existing or

proposed system, simulation which implies discrete event simulation has been used in

favour to conventional methods. Many reports (Zulch and Grobel, 1992) (Maxwell

et. al., 1983) have shown that it is a powerful tool for the planning, design and control

of complex systems. Because it is a set of well-designed experiments, simulation

requires tremendous computer power and time. Therefore, most simulation models are

limited to a small area such as a cell or in the modelling of the processes of a work

station. Although results of analysing partial systems can assist us in gaining

knowledge, it is fragmented. It cannot provide a global picture of the system where an

attempt is made to modify current performance so as to achieve the desired business

goal, to analyse the success of actions to accomplish change, and to evaluate merits

and demerits under different proposed strategies. However, if the system studied

contains too many variables, current computer power is not capable of providing an

adequate analysis within the available time and / or resources (Shanon, R. E. 1992).

How to simulate a large system to assist managers in getting insight into their

objectives is becoming increasingly important and critical.

As the knowledge of system behaviour can be expressed in quantity, application of the

metamodelling method has been re-considered recently (Yu and Popplewell, 1994). A

metamodel which uses a mathematical formula to generalise simulation results instead

of running a simulation model is recommended (Freedman, 1987) (Madu, 1990).

Because it is a mathematical model which takes much less computer memory and time

7

Chapter 2: Scope of Research

to execute, it can overcome the disadvantages of simulation. Hence, it can offer an

opportunity for modelling a large system. In addition, because simulation is a trial and

error method, it does not provide a method of optimisation. To put it simply, it results

in indirect guidance as to ways of optimising system performance. In contrast, the

metamodelling technique is able to indicate the impact of each independent variable on

a response variable by revealing the relationship between the dependent and

independent variables of the system studied.

However, metamodelling depends on a large volume of statistical data, in the absence

of which it would be either difficult to represent the relationships of a system, or even

impossible to identify the relationships. Because simulation is a trial and error method,

a system behaviour can be knowledged via a set of experiments. In other words, the

lack of need for a large volume of statistical data is an advantage of the simulation. It is

very useful in a case where various strategies or operations cannot be implemented in

the actual system by reason of time and cost. Therefore, the author of this dissertation

argues that there is a huge potential value of integrating metamodelling and simulation

techniques in order to increase the possibility of modelling a larger system.

Certainly, metamodelling is not an entirely new technique. In the literature, it has

always been applied in post-analysis of simulation results in order to interpret the

simulation, or to gain the knowledge to guide further simulation experiments. But it

has not been found that simulation and metamodelling techniques can be put into

operation together to treat system design. Although many researchers gain knowledge

of their simulated system through metamodelling which can be generated by an existing

8

Chapter 2: Scope of Research

statistical package, such as SAS, Minitab etc., it is not easy to put both simulation and

metamodelling into practice in a single environment unless the user either writes his/her

own program to transfer simulation data to construct a valid metamodel, or input

simulation data tediously from a keyboard. Obviously, there is a lack of tools which

assist users in employing both simulation and metamodelling techniques consistently.

As a consequence, it is necessary to establish a hybrid methodology which allows us to

model a large system. To demonstrate the methodology, a supporting tool which

integrates the capabilities of simulation and metamodelling is needed. These will be the

topics for discussion in the later chapters.

2.3 Research Objectives

From the above brief overview of the problems, it is clear that the main objective

of the study is to research into embedding a metamodel into a simulation

environment, to enable us to design and analyse a complicated manufacturing

system by means of simulation.

In order to achieve this aim, following are the objectives of this research work:

9 to apply a metamodel in a simulation environment to take the advantages of

metamodelling to overcome imperfections of using existing statistical

packages.

9 to insert a metamodel in the simulation to produce a hybrid methodology

9

Chapter 2: Scope of Research

which enables the simulation of larger systems in less time and with reduced

cost.

9 to develop a tool to explore the feasibility of supporting the hybrid

methodology.

" to demonstrate an efficient and economic methodology by which

knowledge is gained for decision support.

USER

Simulation Model

Metamodel

Figure 2.1 Embedded Metamodel in Simulation

23.1 Research Approach

In designing a manufacturing system, a new hybrid methodology is first proposed. It

should possesses the following features:

9 the capability of the object-oriented programming and technique of

statistical analysis

10

Chapter 2: Scope of Research

statistical analysis

" approximate system description

" low cost and efficient evaluation

There is also a need for a tool to allow the user to do it within IDEM software. The

features of the tool are composed of the following:

9 menu driven for various options

" handling input and output simulation results easily

9 icon indication

" flexible replacement between simulation and metamodel

To fulfil the tasks, the research takes three stages, these are (a) building a simulation

model of a manufacturing system (b) generating a metamodel according to a detailed

simulation model where knowledge of the behaviour of the system is needed, (c)

replacing the simulation model with the corresponding valid metamodel.

Figure 2.2 shows an overview of this research.

2.3.2 Case Study

To test the methodology in practice, an i ial case is studied. Since a problem is

beyond the scope of this dissertation, a dynamic problem of the shop floor has been

chosen for study.

11

Chapter 2: Scope of Research

Hybrid
Methodology In

realization

OBJECTIVES

- Generating Metamodel in
simulation environment

- Replacing partial simulation
model with metamodel

- Developing tool to demon-
state the methodology

Literature
Review

problem
ident{f,

-t

cal[-,
\

/

Figure 2.2 Overall of Research Objectives

nplementation

ase Study

12

Chapter 3: Literature Review

Chapter 3

LITERATURE REVIEW

3.1 Introduction

This literature survey examines previous works relevant to the research. The

contributions are evaluated, existing problems are identified and potential improvement

uiethods are discussed. The design of factory is viewed at first, and this is followed by

simulation technique. The survey then examines mathematical approaches in terms of

metamodelling techniques and time series.

3.2 Factory Design

Over the years the radical changes have been taken place within industry in order to

make the production capability a formidable competitive weapon. These changes

encompass a entire range of activities that begin with market demand and end with

customer satisfaction (Chaharbaghi 1990). Those activities are not only within the

factory but also extend to external collaborators, for example vendors. Therefore, there

is no doubt that a factory design methodology is needed for r -design of existing

manufacturing systems, or developing entirely new plant to ensure a manufacturing

system remaining competitive in the short and long tam

In this section, infrastrucaue and facilities of a factory have been examined at first. The

13

Chapter 3: Literature Review

dynamic behaviour of a factory has then been viewed in different dimensions. The

issues related to this research work are discussed. Finally it considers current design

methodologies.

3.2.1 The Concept of the Factory

There are two types of manufacturing systems: conventional manufacturing system and

computer integrated manufacturing system (CIM). However, whether a conventional

manufacturing system or a computer integrated manufacturing system (CIM) is

applied, every factory comprises the products its produced and the facilities which are

used to manufacture the products. Every factory is committed to delivery customer

satisfaction as its ultimate goal. The differences between the conventional factory and

CIM lie in the use of information system and the organisational by the information

system and the application of advanced technologies. Because a manufacturing system

can classified differently by using different methods, the definition of CIM will also

vary accordingly.

In general, a factory's internal organisation can be classified into sales, marketing,

engineering and manufacturing. Each of these sectors is independent in function but

works as a totality. The functions and the interactions between them are represented in

Figure 3.1.

In different cases, the definition of them changes. Prutte et al. (1988) categorises the

facility into four: marketing, accounting, production and inventory. Rembold et al.

(1989) classify into marketing research, long-range planning and forecasting, capital

14

.. ' oý

ti

2
E

E

O
b

u

cir
X
. ý1
evi
L

GL

Chapter 3: Literature Review

equipment and facility planning, customer order servicing, engineering and design,

manufacturing process planning, production order planning and manufacturing

monitoring and control, purchasing and receiving, inventory management, maintenance

and accounting.

3.2.2 Dynamic Performance and Measurements

So far, the essential components of a factory have been examined. How to measure

and predict its behaviour is left up to us.

Traditional measurement of performance focuses on direct labour and short-term

financial elements. As technology advances and long-term investigations are made,

these techniques fail to direct managers towards the objectives of the modern factory.

Performance measurements have therefore been improved from several aspects, such

as flexibility. Wei-Hsien Tsai (1992) reports on extended dynamic performance on

Automated Manufacturing Technology (AMT), in which both customer satisfaction

and increasing market share are taken into consideration. His findings show that not

only production but also business objectives should be in the performance measure.

Paraphias group researched on the flexibility of the manufacturing system. From this

certain factors for instance the rate of new product innovation and the rate of customer

satisfaction are recommended, among those flexibility is identified as one of most

important features in factory design.

Focusing on estimating business value from the re-structure of the organisation

16

Chapter 3: Literature Review

measures the effects of investment in re-engineering on the different aspects of

enterprise performance, such as profitability, flexibility and competitiveness. The

primary economic impact of re-structuring an organisation occur at the operational

levels, such as cost reduction and flexibility, these effects may then be traced though

the value chain to affects at the enterprise performance level, such as profitability.

Different areas vary with certain parameters for which state or behaviour can be

revealed. These can be quantities or qualities.

Performance measurement is important on system design. If a correct performance

measure is chosen, the system can be redesigned or modified into an adequate and

reliable model, from which alternative strategies can be evaluated.

Lead time, flexibility and so on are always counted in any type of factory. Machine

break down and other factors which have critical impact on production are also caught.

3.3 System Design Methodologies

Since concepts of a manufacturing system and performance of a manufacturing system

have been discussed, it is now necessary to identify the techniques which can be used

to design a manufacturing system in a systematic way.

CIM-OSA (Open System Architecture for Computer Integrated Manufacturing).

cIM-OSA is a well-known QM architecture. It uses enterprise models for the

17

Chapter 3: Literature Review

monitoring and control of daily enterprise operation. For this purpose CIM-OSA is

developed in two major parts: an executable enterprise model and an integrated

infrastructure. The total enterprise model is viewed in respect of its function,

information, resource and organisation, see Figure 3.2. The model should be

generated in a mode of enterprise derivation which is supported by enterprise

requirements definition, enterprise design specification and enterprise implementation

description. The enterprise implementation description is the model which will be

released to the integrating infrastrucdut for execution of the daily enterprise operation.

Three levels of generalisation will be supported by generic building blocks, partial

model and particular model. (Jorysz and Vemadat, 1990) (Klittich, 1990).

Though the method is often used to produce a reference model, only function and

information views are completed and presented at moment. The behaviour and time

representation are insufficient (Wortmann, 1994).

GRAI methodology (Graph a Results et Activities Interlies).

The development of GRAI is based on the argument that using formal rules in the early

phases. It will reduce errors in design and therefore improve overall system

pe formance. It has three phases: analysis phase, design specification phase and

operation-level phase. (Doumoingts et al., 1987)

This approach, however, does not encourage the designer to check for tochnological,

economical or financial feasibility during the design process. Also there is no reference

to company strategy, or the multitude of other 'business' questions which should be

18

Chapter 3: Literature Review

Stepwise Instantiation

a,. Resources
view

organisation

Info mati on Infos,
5ý' View - Vi

Resources a

I
W

Information

Function j Function Function
favn

Generic Partial Particular
Requirement Requirement Requirement

Definition Definition Definition
Generic Partial Particular
Design Design Design

Specification. Specification Specification,
Generic Partial Particular

Implementation Impl tation Impl tatici
Description Description Description

Figure 3.2 Overview of CIM-OSA Architecture Framework
(adopt from Jorize, 1990)

19

PAGE
MISSING

IN
ORIGINAL

Chapter 3: Literature Review

W410

Figure 3.5 IDEFO Methodology

function (or activity) and arrows denote flow of data between activities. Input data to

the left of the box is transformed and results are output from the right of the box.

Control arrows to the top of the box denotes the constrains that affect performance of

the activity. Mechanism arrows to the bottom of the box represent the resources that

carry out the activities. To overcome the lack of information modelling, IDEFI has

been designed. It is developed for design of integrated database. However, its lack of

an inherent means of describing inter-functional entities (Bravoco and Yadav, 1985b)

led to the development of IDEF x. IDEFix is a graphical semantic information

modelling technique which defines the logical structure of shared data in terms of

entities, attributes of entities and relationships between entities (SofTech Inc., 1979)

(Mackalak, 1983) (Hicks et al., 1986). The limitation of IDEFix on dynamic

modelling initiates the creation of IDEF2. IDEF2 is focused on improving the

productivity of sinwlation modelle rs(Bravoco and Yadav, 1985c)(Sarkis and U, 1994).

23

Chapter 3: Literature Review

In summary, these methodologies adopt a top-down approach. Some of them have

been considered and adapted widely. The opposite of a top-down approach, is bottom-

up design. By convention, bottom-up approach implies putting all the information and

data which exists at low levels into higher level. The higher level model can then be

testified and justified. Although this way has been adopted during the system design

process, it is more like a feedback or design life cycle than a methodology. In fact,

there is no evidence that a methodology for bottom-up approach yet exists.

A comparison of each system design methods is illustrated in Table 3.1.

Meyer et al. (1987) concluded that GRAI-net formalism has proved to be a valid tool

for knowledge acquisition relating to hierarchical planning, sub-goal interaction, and

constraint inter-dependence. However, this approach must be oriented according to the

specification, which is not transferable.

In the report given by Hicks et al., IDEF methodologies have been used for modelling

a CAPM system It is argued that the performance of CAPM systems critically depends

on the "model" of reality, stored as data within the system, being realistic. The IDEF

methodologies are helpful at the design stage, but operational factors also have to be

taken into account.

Colquhoun et al. (1989) described how IDEF0 can be used to link design and

manufacture in a CIM environment. This linkage can be established by use of computer

aided process planning. The IDEF0 model has defined the information flow necessary

24

yy

ýöýzzz

..................... ... H

i
coo

_%y00y

... ...

:9

................. ö ..

vj

..
yHyý

i7

gSI

Hy cýa

äý

I

Ö

Ö

U

M

H

JC
O

I

Ö

. xi
s

ýý.

chapter 3: Literature Review

manufacture in a CIM environment. This linkage can be established by use of computer

aided process planning. The IDEF0 model has defined the information flow necessary

to support each activity so that functional and information flow requirements can be

established for the computer system at each level defined in the ISO proposed model.

The IDEF technique is also recognised to aid the implementation of changes (Bravoca

and Yadav, 1985a) (Baines and Colquhoun, 1990).

Modelling complex system interactions in a manufacturing enterprise is a current

research topic. In practise, a graphical model of the order-to-ship (OTS) process was

built using hierarchical process modelling (HPM), derived from IDEF0. The model is

focused on the flow of information, material and control, and results in "the OTS

model yielded a way to promise of the potential of showing the impact of complex

interactions among different parts of the manufacturing enterprise". (Mujtaba, 1994).

Except for the above well-known methodologies, a schematic modelling concept has

been introduced to offer an advanced simulation methodology for system design. The

appeal of this schematic modelling concept is its simplicity and flexibility. The

methodology gives the user the versatility of having as many conditions as are

necessary to define in any desired way, i. e. interactions of functions performed by

objects within a system. (Chaharbaghi, 1991)

It is often useful to study a dynamic real-world system to learn something about its

behaviour. However, it is generally necessary to use a model to study the performance

of the system first, since experimentation with the manufacturing system itself would

be either disruptive, not cost-effective or simply impossible. An appropriate model

26

chapter 3: Literature Review

could shed some light on this question by allowing the operation of the plant to be

studied as it currently exists and as it would be if the plant were expanded. A model

which is composed of entities and the relationship between the entities can be

constructed using mathematical methods, if the relationship is simple enough.

Otherwise simulation can be used if the relationships are complex.

3.4 Discrete Event Simulation

In aid of system design, certain tools are available. Simulation is one of them.

Simulation, refer to Shannon (1984), is the process of designing a model of a real

system and conducting experiments with this model for the purpose either of

understanding the behaviour of the system or evaluating various strategies for the

operation of the system. Therefore, a simulation model is an abstracted representation

of real system which attempts to indicate problems and solutions to the problem by

using a trial and error approach.

According to the time changing patterns, simulation models can be classified into

following three types:

- discrete event simulation

- continuous simulation

- combined simulation

Since a manufacturing system performance can be considered, in a modelling

environment, as continuous processes and discrete events, simulation here refers

27

chapter 3: Literature Review

A simulation model may be built using either a general-purpose language (e. g.,

FORTRAN, BASIC) or a simulation language, which can be further divided into

general-purpose simulator and specified model.

The advantage of using a language - like FORTRAN is that it offers the user the

ultimate flexibility to model virtually any system; also the language is probably already

known by the user and probably available on the user's computer. On the other hand,

simulation model written in a general-purpose language can take a tremendous time to

develop since the language is not particularly oriented toward simulation modelling. In

contrast, using a simulation language accelerates a model building process because of

certain modules or features offered.

3.4.1 Simulation Languages and Simulators

Simulation languages that are applicable to manufacturing problem may be further

classified into two categories, general-purpose simulation languages and

manufacturing-oriented languages / simulators.

General-purpose simulation languages, such as GPSS (H, V, or PC), WITNESS/SEE

WHY, SIMAN/CINEMA, SIMSCRIPT 11.5, SLAM, are useful for simulating wide

variety of systems (e. g. health system and motor way service system) in addition to

manufacturing systems, but may contain certain features specifically for manufacturing.

These languages, which exhibit discrete event simulation features, allow an analyst to

develop a simulation model of a manufacturing system in less time than would

generally be required when using a language like FORTRAN.

28

chapter 3: Literature Review

Using GPSS/H, Felix (1992) constructed a simulation model to evaluate the

performance of a welding assembly line which requires modification to achieve some of

the philosophies of a JILT manufacturing environment.

Balancing and design of an assembly line was also researched by Rajamani (1991). A

model, constructed with SLAM II, was used to determine the in-process storage

capacity for physical layout. The use of the simulation model conveys to management

the relationship between in-process inventory and average time a product spends in the

system. Other typical examples are SIMAN (Norman and Scheck, 1986) (Banks and

Carson 11,1985), SIMSCRIPT (Russell, 1986), GPSS (Beerel, 1987) (Schriber, 1986),

and SLAMU (Khoshnevis and Chen, 1986) etc.

Certain simulation software packages, called simulators, are specialised. The

simulators which have been designed for simulating manufacturing-type problems are

of interest here. They include SIMFACTORY 11.5, MAP/1, ProModelPC and

AutoMod. SIMFACTORY 11.5 is a factory simulator written by SIMSCRIPT 11.5 and

designed for engineers who are not full time simulation analysts. It can simulate either

layout or all processes that are involved from workstation to transportation (Jiao,

1993). MAP/i, similar to SIMFACTORY II. 5, is a actually a simulator rather than a

language since a particular system within an available class of manufacturing systems

are modelled by entering data rather than doing programming. ProModelPC, likely

being situated between simulator and language, has more programming features within

the environment, and has the capability to add C or Pascal type subroutines to a

program. Manufacturing features such as AGVs and conveyors are captured as well.

Comparison with the others, AutoMod is very powerful in its description of material

29

chapter 3: Literature Review

handling functions.

Other simulation languages or simulators that are designed for particular purpose such

as one-of-a kind production system design can also be found. A simulator viz. FEMOS

is an example. Market competition has forced manufacturers to change their

production strategy flow producer-oriented strategy to customer-oriented strategy.

Since this type of organisational concept and technical measures are enmeshed on the

one hand with major changes in production systems and the other with possibly high

financial risk, the probable impacts must be estimated thoroughly
,
before

implementation.

3.4.2 Knowledge Based Simulation

Knowledge based simulation focuses on building a knowledge base and its

management by using an inference engine. The knowledge base and inference engine

are provided as distinct and independent entities permitting the modeller to alter the

components independcndy(LaYa'Y" 1986).

In the simulation modeelling, some of the Al techniques, such as rule-based reasoning,

frame-based representation and object-oriented progiramming, have been widely used to

drive the simulation (Langen, 1987). Rule-based reasoning uses "IF-THEN" scheme so

the programming is easily understood. The frame-based representation allows the

incorporation of details of each object and its relationship to other objects in the

system more easily. Any object under the frame-based representation scheme could

have any number of procedures which can be activated by various moans. This means

30

chapter 3: Literature Review

any object knows its behaviour. This is the concept of object-oriented programming.

Ben-Arieh (1986a) (1986b) has developed a knowledge based simulation system for

exploration into the routing of jobs in a multi-cell FMS. Palaniswami (1992) studied

and demonstrated a particular application by integrating a knowledge system with

simulation. It focused on making scheduling decisions in a manufacturing environznent

The knowledge system was constructed using the MA expert system package and the

simulation was performed using SLAM U. Other examples can be found (Lim et al.,

1987) (Doumeingts, Damcau and Berard et al., 1987) (Wang, 1989).

Currently, overwhelming interest in object-oriented approach to simulation modelling

has been recognised. There are many object-oriented methodologies available in the

literature, among them Booch (1989) and Rumbaugh (1987) are popular. Champeaux

et aL (1988) compared twelve object-oriented analysis and design methodologies and

described their differences. Monarchi et aL (1989) evaluated 23 object-oriented

analysis and design methodologies and identified their strengths and weaknesses.

Korson et al. (1990) proposed a unifying paradigm for object-orientation.

3.4.3 Simulation Validation

One of the most important issues in simulation studies is the model validation process,

which determines whether a simulation model is an accurate representation of the

actual system or not. Unfortunately it has not been studied thoroughly in the past

(Cochran, 1988)(Law and Kelton, 1982).

31

chapter 3: Literature Review

One of the validation methods is a multi-step approach which has been recommended

by several authors as a general guideline (Cochran 1988) (Law and Kelton

1982)(Naylor and Finger 1967). The primary objective of the first step is to develop a

model which can produce reasonable results to those people who are knowledgeable

about the system under studied. Existing theory should be used for the modelling, such

as the determination of probability distributions of customer inter arrivals, which has

been proven to be the Poisson process (Law and Kelton, 1982). The second step is to

use statistical procedures to test quantitatively the assumptions made during the first

stage of modelling. The third step tests the ability of the model to predict the system

under study. Two alternatives available for the procedure are historical validation and

validation by for casting (Cochran, 1988). This is the last step used to determine how

representative the simulation output data are to the real system. However, it is often

difficult to compare simulation output data with those from the corresponding real

system First reason is that the real historical data may or may not exist. Second one is

that they may be difficult or even impossible to collect. Besides statistical procedures,

people who are knowledgeable about the system can be asked to examine the

simulation output data. ff the people can differentiate them with real system data, their

explanation can be helpful in improving the model validation.

A different approach of validation is to construct a confidence interval for the output

data (Law and Kelton 1982). N the real value of the variable, obtained either from

actual system observation or from established theory is within the confidence interval,

the simulation model can be considered reasonable.

32

chapter 3: Literature Review

3.5 Metamodelling

In general the simulation modelling method is ideally suited to reveal details of a

complex system where interactions and relationships between inputs and outputs can

hardly be identified at primary design stage. However, it requires a great amount of

time and cost in computer power and the results do not give any optimised solution.

Moreover, an industrial manager, who may not be a simulation expert, would have

difficulties in understanding simulation results.

Because the principle of simulation is a trial and error approach, several problems arise

from it. The first problem is that it is time consuming (Law, 1989). This is particularly

obvious if several replications or long runs are needed to compare numerous scenarios

(Palaniswami, 1992). Secondly, simulation is memory consuming, particularly when

running a complex and hierarchical system model (Palaniswami, 1992). Thirdly,

simulation results often need interpretation or statistical treatment in order to be

utilised. Because numerous or large tables of results do not provide the user with

understandable relationships between the simulation model inputs and its responses.

Since there are many limitations of simulation modelling, metamodelling has been

proposed to enhance simulation capability. It can also be seen as a mathematical

approach. According to Keijnen (1984), metamodelling implies an auxiliary model

constructed with the regression analysis method. The detailed principle of metamodel

will be discussed in chapter 5. Because it can establish relationship between inputs and

outputs of a system in quantity, it has attracted more attention recently (Yu and

Popplewell, 1994).

33

chapter 3: Literature Review

Blanning's (1984) model for direct sensitivity analysis is perhaps one of the earliest

examples of metamodelling. Here an inventory model is discussed, and three

metamodels relating to cost, service level and buffer stock ratio are investigated.

Application to an FMS has been demonstrated by Keijnen where the FMS used four

different machines to carry out three types of operations to produce a product. The

results of this metamodel can indicate where the system bottleneck is. This experiment

of regression metamodel has also provided an insight into the work of FMS (Kleijnen,

1988).

There are a range of reports from manufacturing system (Rajamani and Singh, 1991)

(Goyal 1991) (Patrick 1991) to green house system (Rotmas and Vrieze, 1990) in the

literature. Each of them exhibited the use of a metamodel for simulation post-analysis

and proved that it is a worthful post-analysis tool to help to understand the simulation

model. Rajamani and Singh (1991) concluded that " the metamodel helps the manager

obtain an idea of the time a product spends in the system at different failure rates and

the number of repair personnel required after testing". Patrick's work describes and

endorses the use of such an approach to find good parameter values which become the

initial setting to fine-tune the simulation and thereby accelerate experimentation.

A maintenance float problem has also been studied by Christan Madu et. al. (1992).

The metamodel is formalised with factorial experimental design. As given combination

of repair person and standby units, the model can predict the average equipment

utilisation of a maintenance float system.

Eifon and Mathewson (1973) also emphasise the need for more aggregated models,

34

chapter 3: Literature Review

besides detailed simulation models and propose to use network models instead of

regression metamodels.

Mar and Bakken (1981) and Geoffrion (1976) emphases the need for metamodelling

(outside simulation) in a mathematical programming and system dynamics,

respectively. Hendry (1983) presents metamodels for the generalization of statistical

studies in econometrics.

Jothishankar group (1992) explored the use of philosophy of JIT in real manufacturing

system with metamodelling. The results of their research indicate that "metamodels

provide useful tools to operations managers for identifying the combination of different

variables to achieve minimal throughput time. "

Examples of metamodels used to analyse simulation models can be found in Meisel and

Collins (1973), Ignall et al. (1978), Goldstein and Dushane (1976), Sharbird (1990),

and Friedman and Friedman (1985).

Despite many applications of metamodel have been found, most of them use

metamodel for post-analysis, some of them solely use metamodel to simulate a system.

No case has been found in which both simulation and metamodel technique works in a

single environment.

3.5.1 Validation of Metamodel

Once a simulation model has been developed, the need for validation is still very

35

chapter 3: Literature Review

important

One validation method is to develop a regression model using only two thirds of the

observations random selected (Friedman, 1985). The remaining third, treated as the

holdout part, is used to test the regression model Both selected and unelected cases is

tested by evaluating the R2 (coefficient of determination). If the two Res are very close,

it implies that the model has a good predictive validity and can be expected to perform

well on real data.

Double cross-validation is a technique which is a variation on the above method

(Friedman, 1985). In this method, data is randomly split into two parts of

approximately equal size, so called "split halves". Then, a comparison is made on the

two R2 values. If they are very different, it means that the metamodel is probably not

valid. On the other hand, similar R2 indicates that the metamodel developed on the full

set of data may be used.

The application of cross-validation has been applied for the selection of regression

model can be seen among Atkinson (1982), Cook and Weisberg (1982), docking

(1983), and Hocking and Pendleton (1984).

Snee (1977) suggests a different split of the observations into estimation data (used to

obtain) and prediction; that is, he does not split the n obsuvations into n-i estimation

paints and 1 prediction point, and he does not apply pecmutadon.

For cross-validation, also see Bunk and Drog (1984), Friedman and Friedman (1985),

36

chapter 3: Literature Review

and Narula and Wellington (1985).

3.6 Time Series Approach

Simulation and regression analysis methodsare appropriate to serve a wide range of

steady state applications. Real-time systems have features that distinguish them from

other computerised systems (Ledbetter and Cox, 1985), hence they require real-time

modelling methods and methodologies. To accommodate their real-time nature, a

number of extensions to general purpose modelling methods (such as a data flow based

methodology) have been proposed. The extensions, developed by Ward and Mellor

(1985) and Hatky and Pirbhai (1986), enable the analyst to represent control flow and

control processing as well as data flow and processing. It also includes state transition

diagrams for the processes. In addition, time series is suitable for real-time systems

design since it deals with the analysis of a sequence of data, usually in time order. From

a technology point of view, Priestley (1981) defines time series as a stochastic process

with finite second moments. The feature of time series analysis that distinguishes it

fron other statistical analysis is the explicit recognition of importance of the order in

which the observations are made. Many of the time series development have been

contributed from the field of statistic and mathematics, although they have widespread

ranging from engineering to social science.

Priestley (1981) and Jenkins and Watts (1968) worked in the theoretical frequency

domain. In contrast, this is the time domain which is based on Wold (1980)

decomposition theory and can be found among Newbold (1981) (1984). Two papers

describing later research relating to frequency and time domain respectively could be

37

chapter 3: Literature Review

obtained from Brillinger and Kishnaiah (1983) and Hannan et al. (1985).

MRP under the uncertainty demand and the change of lot size rules has been

investigated with time domain approached by Ip (1993). It reveals that demand

variation and lot size rules have a significant impact on MRP performance. The

relationship can be adequately represented using the time series methods. The results

of it can be taken as knowledge for manufacturing system design. Finally, he concluded

that "integrated simulation and time series approach appears to be a powerful

methodology for the design and analysis of complex manufacturing systems. "

Both Buzacott (1985) and Cheng (1985) have researched on real-time control of

assembly line balancing and resource allocations by using simulation. However,

application of these results are of limited value since they do not capture the vital time

information about the system. To meet the time demands in real-time control, Cochran

and Li (1993) have developed a decision support system in which the time series

method is applied to express and predict dynamic transient behaviour of an assembly

line so as to assist a manager making decision. They reported that "the resultant

empirical representations reveal a surprising accuracy. "

3.7 Evaluation of Statistical Software

As already mentioned, a metamodel is a type of regression model so that a software

which has functions to generate regression model can be used. Here three popular

software package, SPSS, SAS and MiniTab, are evaluated. The results of comparison

of the three packages is displayed in Table 3.2.

38

chapter 3: Literature Review

SPSS (Statistical Package for Social Science) is a general statistical analysis package,

a detailed description of the SPSS can be seen in (SPSS-X user guide 1986). The

regression modelling is available in the Regression Procedure of SPSS. The procedure

consists of two steps, Identification and Estimation. The user is required to identify, by

checking the statistic data such as coefficients and standard error, whether or not the

regression model is valid (SPSS-X, 1986)

SAS (Statistic and Analysis Software) is another statistical software which has the

advanced forecasting module in Econometric and Time Series Analysis. SAS includes

the AR1MA procedure, STATE SPACE procedure and spectral analysis for modelling

univariate and multivariate time series (SAS, 1985)

MINITAB is an interactive statistics package written and distributed by Minitab Inc.,

Pennsylvania, USA. The package offers a variety of statistical methods and can be used

for data manipulation and selection by various conditions. Regression Analysis is one

of the functions offend. Regression Analysis procedure for metamodelling is simple. It

only involves data entry, regression analysis and validation. The validation can be

performed by checking the residuals. The regression method includes Stepwise with

analysis of residuals (Ryan, et al., 1985).

39

chapter 3: Literature Review

SAS SPSS MINITAB

Methodology Regression analysis

and Time series

Regression analysis

and Time series

Regression analysis

Multivariate

transfer function

Yes No No

Differencing /

transformation

Yes Yes Yes

Graphical data

analysis

Acceptable Acceptable Acceptable

Menu driven No No No

Easy to use No Acceptable Acceptable

User knowledge High Medium Low

programming

capability

Yes Yes No

Table 3.2 Major Feature of Existing Statistical Package

40

Chapter 4: Background

Chapter 4

BACKGROUND

4.1 Introduction

The challenge from international and national markets is more serious than ever. It

forces manufacturers to design or re-think their manufacturing systems to enhance

their competitive capability. This capability can be described and evaluated in terms of

its flexibility, efficiency and reliability. The difficulty for management is how to achieve

and maintain a suitable manufacturing system design in both the short and the long-

term.

To solve these problems with minimum cost and maximum efficiency, simulation has

been used for many years. In order to make this technique user friendly, several

methodologies have been reported and a lot of simulation software were established.

However, these Softwares either succeeds in system description alone or solves only a

narrowed dynamic system problem, such as a cell or shop problem in the

manufacturing environment. The software systems do not treat the system as a whole.

The HMSM (Hierarchical Manufacturing Systems Modelling) project' was carried out

at LUT in order to research into these problems and develop an associated tool. The

research objective in this thesis is part of the objectives of the project, and the author is

'his project is supported by the ACME Directorate of the Science and Engineering Research
Council.

41

Chapter 4: Background

one of the members of the team.

4.2 The HMSM Project

The HMSM project seeks to address the problem of supporting the design of a

factory-scale manufacturing system. The approach adopted is to develop a

methodology in which a manufacturing system can be viewed broadly, and can be

designed coherently.

The project has three objectives. The primary one is to propose an integrated

modelling methodology appropriate for application in the design of new factories, or

the redesign of existing factories. The methodology should also facilitate the evaluation

of existing manufacturing systems from a factory-wide view of point. A secondary

objective is to design a prototype software tool which is capable of supporting the

modelling methodology at various levels and demonstrate the feasibility of such a

software. The third and last objective is to offer users considerable assistance in the

interpretation of results derived from modelling. Such assistance serves both as a guide

to the validity of conclusions which may be drawn at any stage, and also directs

attention to areas of the model where the degree of approximation or uncertainty

should be reduced before valid conclusions can be drawn.

4.2.1 IDEM Methodology

The Integrated Design and Modelling (IDEM) methodology is a multi-level multi-view

42

Chapter 4: Background

method. At each different level, certain important aspects of the system are captured,

and different but related viewpoints are applied. Figure 4.1 illustrates the scope of the

IDEM methodology. Although it was developed for manufacturing system design, it

could be used to analyse or design the structure of other general system. The method

has the following major phases:

1. Conceptual Modelling Phase. This is a study of the current structure and

behaviour of the system and interpretation of new business target. This results in

constraints and possible inconsistencies of the current system being identified and the

specification of the requirements of a new system in order to meet the business

objectives. A boundary is then determined in which design activities can take place. It

is clear that the boundary works as a reference model to guide the design of a model in

the simulation modelling phase.

2. Simulation Modelling Phase. After the reference model has been set up, the aim of

this phase is to design a system which possesses the desired characteristics. This is

done by using simulation techniques. This phase can be subdivided into two levels:

(a) Approximate modelling level. An approximate factory model is developed which

focuses on global views of the system, whilst omitting details. An approximate model

of a manufacturing system is thus described from three different but related viewpoints:

the function view, the information view and the dynamic view. Figure 4.2 shows the

concept of each view point concerned and the correlation of the three view points. The

multi-view approach allows a user or modeller to observe the behaviour of the

designed system from the different viewpoints. The benefit of the model is that it is

43

vzv zzý
öa

zö

N

a
ý_

b' Ö

U

"ýf N
ýýýCCCý

iZ

<0

LN

V

CO
G

00 o`u ýP
A

0vvE
u

%2

ýUwý ÖG

röä

> 'E6o is
ÖmNil

výv8iÜ

ä

00

°Ö äý G o ,o o

w W
e'ý 3 O0 A
E$ o

Ö

A ä
c 3 Ü

0

cn
CI]

Q`
ty 1-"

1ý1

V Ell Vü

y

8

C 'ý U
RN

LE
L

I

u
cc
O
ß

O
13
ß
C.

ar
h
is

6ý

N
14

ýC
... Gr.

lý(r

Chapter 4: Background

able to identify sub-systems likely to be critical in the performance of the system and

also identifies organisations and activities which need to be investigated further.

Function View. At this initial design stage, the major decision is concerned with the

functional structure of system and the flows of information which co-ordinate its

functions. In the real world, since the problems are revealed gradually, even if the

problems are specified, a manufacturing system is too complex to be expressed at one

single level. It is necessary for a designer to have a tool with which a model can be

gradually constructed level by level. As shown in chapter 2, IDEF0 is such a

hierarchical modelling tool and it entirely meets the requirements of exploring this

function view of the factory. Therefore, IDEF0 has been chosen as the basis of the

functional view in IDEM methodology. The conventional IDEFo modelling tool

encourages a hierarchical decomposition of function - each function may be broken

down into a set of detailed functions at a lower level, this important feature has been

inherited by IDEM methodology.

Information View. Although the information required by functions is presented at the

functional view, the information does not describe the relationship of data items. It is

the information flow pattern. Thus there is a need for an information view as well. In

this view, information in terms of information contents and its structure is determined

by the specific task and is limited by related constraints.

Dynamic View. The last view of the IDEM approach is concerned with the behaviour

of the factory in terms of time attributes. It means each of the lowest level boxes

46

Chapter 4: Background

should be assigned transformation information. This information should contain

operation time for each process and should be applied to receive inputs. Through the

input of process information into each function box together with the information upon

which it acts, a simplified and abstracted existing manufacturing system is completely

formed. The performance of a system can be tested and the results of operating such a

system can be analysed.

(b) Detailed Modelling Level. Based on the approximated model, an extended model

is constructed by adding details to selected areas of the approximated model. This can

provide the linking mechanism between sub-system simulations, allowing the study of

their interactions. Here activities of each entity are the major concern. This level also

includes the information view and the dynamic view with more details.

By using a combination of the multi-view and multi-level approach together, a

simulation model of a factory can be generated. However, a system design may not be

carried out all at once. For instance, after the analysis of the dynamic behaviour of the

designed system, new problems may be identified and better understanding of known

problems may be gained. This leads the designer to reconsider the established

functional structure. To make this design cycle easy, IDEM methodology provides a

bottom-up approach which is important in maintaining the model during the design life

cycle.

47

Chapter 4: Background

4.2.2 IDEM Tool

Having viewed IDEM methodology, a prototype software tool has been developed to

fulfil and support the methodology.

I. Approximate Modelling:

Function view. It is a functional diagram with flows of information associated with

these functions in the IDEFo form. An example is given in Figure 4.3. In terms of

factory design a box denotes a function not a department, arrows denote flows of

information and flows of physical material associated with a function.

Though conventional IDEF0 includes flows of information, it does not constitute an

information model. It neither shows the structures within flows nor the relationships

between information entities. Thus, to achieve the requirements and to make

transferring the function model into an information model possible, three approaches to

the development of the IDEM function view have been adopted: conceptual,

syntactical and the provision of facilities. In addition, three types of label have been

identified and provided.

Information view. Information is the data the functions operate on. This view is

brought about by means of support facilities for inputting and editing the data related

to the established hierarchical functional model. Because of the extension of the IDEM

function view, each IDEM label or box of the functional representation may enter data

directly and has a data handling function which gives a user the ability to specify

48

o
0 V°

q 1
*q

14
: Ilk a

A A A

ý ä°ä ö
ýäea

b
ýö

ti

0
w

4>

ö in

Öw

N

wg

4,
d
d
wyý/

W

r
a

v

IN 0

40 >I. Wý d

Z 01,1 OA

a+
00

v

0 2 9d- _ 46

&4

K. 4

aw

yäi

ýý

4 iä
tq

y1 M
MN

hAgo E'ý

OW

(ý 7

N

v

d M
A
OP

is

a
ö
a a
d

:Q ..
Vý"

Chapter 4: Background

matching data. The information includes knowledge of the arrival patterns, and the

value of items associated with both arriving and despatching information object.

In the lowest level IDEM box, information is classified into input flow information and

output flow information. Although both of them have flow name in common, but the

latter also contains flow image and flow data, while the former carries only flow input

gate. The matching function, the data handling function and the package selecting

function are treated as information as well, and can be identified by a unique name.

Dynamic view. In this work, this means the provision of facilities by which the user

can express behavioural and decision rules which operate on the data entered during

the construction of the information view. Each IDEM box has a defined behavioural

rule. In addition, the IDEM methodology also provides a facility to allow users to

specify their own specialist behavioural rules.

At a high level, a decomposed function does not need behavioural rules but does

require route information between a set of substitute functions.

Performance output. This is a necessary and important part of the IDEM tool. There

are two categories, debugging and performance reporting. It can also be divided into

time related and quantity related performance.

Within this modelling stage, the IDEM tool provides a formatted structure for the

information and dynanic views. Thus the tool is easy to use for a user who has less

50

Chapter 4: Background

knowledge of modelling and the environment.

II. Detailed Modelling

In IDEM methodology, detailed modelling level is also called the zoom-in paradigm.

Here, a user can develop or create their own sophisticated knowledge and data base

without the frame, which is offered in the approximated modelling stage. Although this

requires the user to have great knowledge of the LISP and LOOPS, it is a powerful

tool which gives the user a chance to do precisely what he would like.

In contrast with organisation structure and information associated with the

organisation being the design objective at the approximate modelling level, time

attributes and individual processes are the main concerns in this design level. Detailed

information and activities, such as how many parts are to be manufactured, what

operations to be made and what production rule to be applied, are simulated in order

to understand the behaviour of the system. Thus, time scales at this level are smaller,

and the requirements for computer processing times and memory could increase

dramatically according to the complexity and size of the model.

Since many fields in manufacturing systems have been researched, certain knowledge

relating to commonality can be found. The project offers a zoom node library in order

to simplify the design process. The library consists of a set of nodes, which represents

an object in the real world, each of which possesses essential activities and

characteristics of the object.

51

Chapter 4: Background

4.3 Relationship Between the Project and This Research

By using the IDEM methodology and software, the organisation and performance of

an existing or proposed manufacturing system can be investigated. Because simulation

is a comparison technique for various input pattern combinations, validation is a very

important stage. To validate a large system model such as a manufacturing system,

requires an effective validation tool. A metamodel attempts to reduce the demands on

consuming resources, therefore metamodelling has been considered as one of

objectives of the IDEM project. Thus, it can be seen that this work has initially been

developed based on the IDEM project.

A second link to the IDEM methodology. Figure 4.1 illustrates the IDEM

methodology which includes both -- top-down and bottom-up approaches. Since

IDEM methodology has been classed as top-down, the exploration of approaches to

include a bottom-up approach links the project work and the author's research. In a

conventional way, the bottom-up approach implies that user steps back to investigate

another part of a model at an higher level based on all detailed information and rules of

a sub-model. Although it is often used in real design practice cycle, it is not a

methodology rather than a design manner. The bottom-up approach here differs

significantly from the conventional one in concept, whilst adopting the same

terminology, as this indicates the design direction clearly. To be precise, the bottom-up

approach in IDEM is an abstract modelling approach. The approach implies use of a

simpler model, which can generate adequate simulation results and takes less

computation time. These results can then be substituted into a detailed sophisticated

52

Chapter 4: Background

simulation model. Once a sub-system model has been replaced, no more detailed

information or rules of the sub-system are kept in the new model. Therefore, the need

for computing time and memory is decreased when the new model is executed. In

other words, a more detailed simulation model can be built with the same computer.

Therefore, looking for a simpler model is the key in the research. It is well known that

mathematics provides an alternative to constructing a model using a simulation

technique. Also the mathematical model consumes less time in computing.

Metamodelling is such a technique which has been shown capable of generating one

kind of simple mathematical model. Thus, the core of the bottom-up methodology is

embedding a metamodel into a simulation.

Finally this research aims to demonstrate the feasibility of the abstract bottom-up

approach and of reducing resource consumption. In order to do this, a tool is needed

and this should be compatible with the IDEM tool.

53

Chapter S: Hybrid Methodology

Chapter 5

HYBRID METHODOLOGY

5.1 Introduction

This chapter is going to describe the hybrid methodology proposed in this study. The

major tasks are reviewed in the first section. Then, it focuses on the three main

principles, namely simulation, embedding a metamodel in simulation environment and

metamodelling respectively. In the simulation part, the essential principle relating to the

embedded metamodel is reviewed This is followed by the philosophy of embedding a

metamodel in simulation. Finally, the essential concepts of theoretical exposition of

metamodel and validation of a metamodel are explained.

5.2 Overview of Major Tasks

The internal and external challenges force industries to innovate their businesses and

organisations to secure their market position. Many critical factors have to be

identified in order to make correct new policies to face the challenge of the real-world.

This depends largely on the Overall performance of a factory rather than part of it

(I, ove et al., 1992) (Parnaby, 1991).

Simulation has been widely used as a design tool to model a whole process in aid of

evaluating and testing new proposals. However, if the model is getting bigger und

54

Chapter S: Hybrid Methodology

bigger, it will impose a great demand on computing power. This weakness limits its

capability of modelling a larger system, such as a manufacturing one. On the other

hand, because simulation is an experimental technique consisting of a set of trial-error

experiments with a variety of inputs combinations, it allows a system analyst to model

a system initially without mathematical formula. By studying the results of the

experimentation, the analyst can gain a rough and preliminary knowledge of the

system.

A metamodel, which use mathematics to explain the behaviour of a system, makes less

demand on computer's memory and speed. A metamodel, which is one type of

analytical model, can expose characteristics of a system accurately in terms of

revealing the effect of each input on the output in quantity. In addition, a metamodel

can be employed for getting a quick estimate of the expected simulation response at an

input value not yet observed.

It is clear that simulation model can provide an analyst with a chance to describe the

system in order to reduce the complexity at the first stage of design and metamodelling

techniques will give opportunities to accelerate a simulation trial.

Considering the advantages of both simulation and metamodelling, a hybrid

methodology is proposed for a large system design. A prototype tool is then developed

to prove its feasibility.

The hybrid methodology attempts to minimise the weakness of the simulation by

merging both techniques into a single environment. The framework of this research

approach is illustrated in Figure 5.1(a) which mainly provides a user with a road map to

55

Objectives

approximate
modelling level ýý

SIMULATION ENVIRONMENT

T

simulation model
replacement

Figure 5.1 (a) Overview of Major Research Tasks

Research Step

Formulate

a simulation model

:z i
Validate the model

Run the model

Generate

a metamodel
rl

Validate
the metamodel

yes
. Replace the

model with
metamodel

Hybrid Model

- Hybrid
simulation model

r ý ýý

Chapter 5: Hybrid Methodology

understand major tasks. To fulfile the tasks, Figure 5.1(b) depicts implemetation steps.

The novelty of the methodology is in interpolating a metamodel into a simulation

environment rather than extrapolating the same metamodelling technique. Moreover, it

is in a simulation environment where a partial simulation model is exchanged with its

corresponding metamodel and rest of the simulation model remains. Therefore,

replacing the simulation model with its corresponding metamodel is the core of the

research. Since a partial simulation model is replaced by its metamodel which demands

less computing time, hence, the disadvantage of using simulation in design of a large

system model can be overcome. By doing so a hybrid simulation model, expressed in

Figure 5.2, based on a simulation model built with IDEM tool shown in Figure 4.3, is

produced.

Figure 5.2 A Case of Hybrid Modelling

57

Chapter S: Hybrid Methodology

Figure 5.1 shows clearly that most of these research activities are implemented in a

simulation environment. Hence, it is necessary to review the concept and philosophy of

simulation first, so that the principle of embedding a metamodel in simulation can be

explained explicitly.

5.3 Simulation Model

In terms of modelling, a model is a simplified system which is represented by elements

that are of interest. It is used as a vehicle for experimentation, often in evaluating the

effects of various proposals. Obviously a model should resemble the corresponding

system. A system model is defined by variables and the relationship between the

variables. The relationship may be represented by means of mathematical equations.

However, for most complex systems with stochastic elements, like a manufacturing

system, the relationship between the inputs and output can not be accurately described

by mathematical equations initially. Modelling such a complex system is made possible

by employing simulation techniques. It is often applied to assist a user to obtain the

knowledge of their system or to investigate their potential policies.

Any system can be viewed as part of a larger system For instance a manufacturing

company is part of the national economy, which can be regarded as a system itself. On

the other hand, each system can be split up into a group of smaller systems. So a

department of the manufacturing company can be considered as a system, of which the

company becomes the environment. Comparing a larger system with a smaller one,

58

Chapter S: Hybrid Methodology

there is a commonality between them, that is transforming input into output over a

time period. Hence, any system can be regarded as a simple input-output system,

shown in Figure 5.3, regardless of their size and complexity.

input Xl

input X2 output Y
transformation No.

input Xi

Figure 53 An Example of Input-Output Model

A system consists of two types of elements, inputs and outputs. The elements of a

system are represented by the so-called endogenous variables. They are characterised

by their attributes. Each attribute may have a logical or a numerical value. The inputs

of the system are the exogenous variables. Between these elements there are their

relationships. The relationships, represented by either mathematical equations or

simulation model, show how the variables react to changes in other endorgeous and

exogenous variables. But relationship dog- not have to be limited to elements within

the, system, they can also refer to the environment of a larger system. Another

characteristic of the system is that, over a time period, the input variables X have been

transferred into the output variable Y. The principle of a transformation box is shown

59

Chapter 5: Hybrid Methodology

in Figure 5.4, revealing that a transformation activity is accomplished over a time-

scale and the transformation function works like a queuing system.

input Xi

input Xi

output Y

Figure 5.4 An Illustration of Insight of Transformation

Let's consider a service facility with a single server e. g. an information desk at a bank,

the expected average delay in queue of arriving customers is estimated, where the

delay in queue of a customer is the length of the time interval from the moment of his

arrival at the facility to the instant he begins to be served. In order to estimate the

average delay of a customer, the state variables for a discrete-event simulation model

of the facility would be the status of the server, i. e., either idle or busy, the number of

customers waiting in an queue to be served (if any), and the arrival time of each person

waiting in queue. The status of the server is needed to determine, upon a customer's

arrival, whether the customer can be served immediately or must join the end of the

queue. When the server completes serving a customer, the number of customers in the

queue is used to determine whether the server will become idle or begin serving the

60

Chapter 5: Hybrid Methodology

first customer in the queue. The time of arrival of a customer is needed to calculate his

delay in the queue, which is the time he begins to be served minus his time of arrival.

Discrete-event simulation concerns the modelling of a system as it evolves over time by

a representation in which the state variables change instantaneously at separate points

in time. These points in time are the ones at which an event occurs, where an event is

defined as an instantaneous occurrence that changes the state of the system.

In simulation environment, the transformation of a function is described by a set of

experimentation rather than mathematical equation(s). The simulation model is

evaluated numerically, and data from the results of the simulation model are examined

to produce the knowledge of the input-output system. Because the knowledge is

obtained from experimentation, the technique requires a large amount of time in order

to make the results reliable and accurate.

5.3.1 Mechanism in IDEM Simulation

After discussing simulation in general, now it is necessary to analyse the IDEM

software, because the IDEM is chosen to construct a simulation model and is the

environment in which a prototype tool will be developed (see chapter 4.3).

Since the IDEM offers the user a dynamic view to simulate the system (see chapter

4.2), the software provides dynamic objects, IDEM box and IDEM node'. Each

' IDEM node implies either stage-process or router-process. They are developed entirely by the author
and can be applied in detailed modelling level only.

61

Chapter S: Hybrid Methodology

dynamic object represents an entity i. e. a system, a function or an activity in real world.

Hence, every dynamic object can be regarded as a transformation box, exposed in

Figure 5.5.

lOHM Dyiuwic Obj ct
input 1

'

output ýi Match Process

function - pme delay input 2

Figure 5.5 An Illustration Of Principle of Transformation
Of A IDEM Dynamic Object

The above figure shows clearly that the transformation activity of an IDEM dynamic

object comprises of match function and time elapse. The match function performs the

transformation function which transforms input into output in both quantity and

quality. The time delay can be seen as a process time that is required by the

transformation activity. Considering an assembly job at a station, for instance, the job

is assembling two parts i. e. input] and input2 together. Assuming a batch of input]

arrives at the station first, it is then put into buffer to wait. Once a batch of input2 has

arrived, the assembling activity, represented by match function, starts to transform

input] and input2 into product -output in quantity and quality. Here it is necessary to

point out that time is not considered as it happens in real world because of the

62

Chapter S: Hybrid Methodology

philosophy of discrete event simulation. If the server2 is idle, the job, represented by

process - time delay, starts immediately, or say, the process time takes into account

right at this point. Otherwise, the job is put into a queue waiting to be served3. As the

process time is reached, the output denoted by an event in discrete event simulation is

released.

A detailed IDEM model results from decomposing an IDEM box. Because the detailed

model comes from the box, the matching function of the box is divided into a set of

IDEM nodes which fulfil the same purpose before it was decomposed. The time is

distributed among the nodes.

5.3.2 Function of An IDEM Box vs. Function of A Detailed Modelling Page

See Figure 5.5 again, the dynamic node can be treated as an IDEM box.

The total transformation time can be expressed in following form:

It = t�, +top ý5.1)

tv denotes operation time required by a job. tw denotes waiting time. Further, t,,, is

specified once a type of job is determined, and t, r varies with length of queue. Thus, ta,

and tw can also be expressed as a function as below:

z The number of servers of an IDEM node is specified as 1.
The queue discipline is an attribute of an IDEM dynamic object. It can be assigned the same to all

dynamic objects applied in a model or assigned into the rules of each IDEM dynamic object
individually.

63

Chapter S: Hybrid Methodology

tw =f(M,) (5.2)

t. p =f(tpe; j (5.3)

thus, t, may also be written, from (5.2) and (5.3)

ti =. f(Q,)+f(typej
b) (5.4)

It is clear that a transformation of a IDEM box, denoting a system, is a function of the

length of queue in the box, assuming the system have fixed types of job.

In contrast with the function of an IDEM box discussed above, the principle of a

detailed IDEM model is exposed as follow. Figure 5.6 is an illustration of a detailed

model, which is given by breaking down an IDEM box

64

Chapter S: Hybrid Methodology

Figure S. 6 A Illustration Of A Detailed IDEM

In the figure 5.6, there are three objects for three different operations - operation i (i =

1,2,3). Each object can be a machine or a shop, and it can be considered as an input-

output transformation system in terms of having the functions - match and process. As

a job arrives in the system, the lead time of the job is:

tt = tw1 + topl + tw2 + top2 + tw3 + top3

"Owl'ft +tM3)+(ro0l+top2+top3) (5.5)

=TW+T, P

Regarding to (5.3), t., (i = 1,2,3) is a function of a job type. Thus, for a specified job,

Top is constant. Refer to (5.2), t, (i = 1,2,3)is a function of the length of a queue of the

object, hence its expression is like t,,; =f (Q,) (i=1,2,3). At a point in time, Tom, depends

on the sum of each individual queue length. In other words, T. is a function of total

number of jobs in the system. Hence, (5.5) is converted into

65

Chapter S: Hybrid Methodology

tr = f(00 +f(tyPei b) (5.6)

If the detailed model is viewed as a whole, (5.6) is equivalent to (5.4).

In summary, a lead time varies with type of jobs and number of jobs in the queue of a

system.

5.4 Embedding a Metamodel in Simulation

The objective of the research is to solve simulation problem by means of computing

time and cost. This can only be achieved by decreasing simulation model execution

time, because the simulation is a function of time and transformation (in quantity and

quality). A metamodel consumes much less computing time to generate almost the

same results as simulation does. Therefore, replacing a partial simulation model with

metamodel is the way to minimize the identified simulation problems.

In conventional terms, a metamodel is used to interpret and analyse a simulation

model. It is also often used to explain the relationship between endogenous and

exogenous variables in a transformation function, ellipse part displayed in Figure 5.4.

Here, the metamodel differs from the conventional one. It considers time only by

means of the time scale shown in Figure 5.4. Therefore, both independent and

dependent variables of a metamodel are related to time.

Before detailing the philosophy of the embedding a metamodel in the IDEM

66

Chapter S: Hybrid Methodology

the requirements of implanting a metamodel in a general simulation environment are

discussed.

5.4.1 Requirements of Embedding a Metamodel in Simulation Environment

Since an embedded metamodel will replace its corresponding simulation model, it

should a) perform the same function as the corresponding simulation model does, b)

generate an event after a lagged interval which is the same as time spent to fulfil the

transformation activity in the corresponding model. To clarify this further, an

embedded metamodel should meet following requirements:

" The key requirement of embedding a metamodel in simulation is the time elapse.

This requires the embedded metamodel being able to generate a reliable elapsed

time.

" An embedded metamodel should possess a transformation function and a time

elapse function. Because it represents an input-output system model, both functions

are essential to an input-output system.

9 Since a transformation function consists of transforming input to output in quantity

and quality, the embedded metamodel should result in the same quantity as the

simulation does.

" Since transformation function is also measured in quality, therefore, an embedded

67

Chapter S: Hybrid Methodology

metamodel must meet this requirement. This means that the embedded metamodel

must transform inputs into correct output, in simulation terms, the output event

should be produced and should carry correct information .

5.4.2 Embedding a Metamodel in the IDEM Simulation Environment

The above section illustrates the generic requirements of embedding a metamodel in a

simulation environment. In order to embed a metamodel in the IDEM environment, it

is essential that a metamodel should meet all the generic requirements. In addition,

there is a need to specify other requirements which are specific only to the IDEM

environment, because this research is conducted in the IDEM environment. In the

IDEM environment, embedding a metamodel in simulation means replacing a

decomposed page box with a metamodel box.

The generic requirements in the IDEM environment can be interpreted as:

" As described before, the matching function performs the same as the transformation

function does, and the process time function performs the same as the time elapse

function does in the IDEM software. Therefore, a metamodel box must have

matching function and process time function.

" In the IDEM environment, a dynamic flow is the output of a box. So, a metamodel

box must produce flow(s) in quantity.

68

Chapter 5: Hybrid Methodology

9 The quality of an output implies the carried concept of the output in the IDEM

environment. Hence, a metamodel box must produce dynamic flow(s) on which all

the necessary information are contained.

"A metamodel box must generate dynamic flow(s) after assigned elapse time.

According to the above points, the principle of a metamodel box is exhibited in Figure

5.7.

IDEN nwexe/d M:

input 1
. ". Procem

Match output
- time elapse

input i, ; caJ
fusion generated

no" .: by Metamodel

Figure 5.7 An Ek stration Of Principle of Transformation
Of A IDEM Metamodel Box

Because a metamodel takes part in the IDEM methodology, a hybrid model in which a

metamodel box is used to represent a metamodel should also meet the need for multi-

view. Hence, special requirements are clarified:

9 To meet the need for the information view. In the IDEM environment, the

69

Chapter S: Hybrid Methodology

information view means a defined information structure (see chapter 4.4). So a

metamodel box must have an information structure.

" To meet the need for the dynamic view. The dynamic view is described by some

attributes, such as data handling function, package selection function and rules

which a user applies specially. So, a metamodel must have the attributes.

5.5 Metamodelling

The requirements of embedding a metamodel in simulation have been discussed. The

details of how to generate such a metamodel will be demonstrated below.

The research of the relevant literature (refer to chapter 3.5) reveals that many authors

advocate the use of a metamodel in simulation. It has been applied for estimation of

factor interactions of a system, control, system optimisation, and so on (Bitran and

Chang, 1987) (Li and Chiu, 1993). These metamodels are often regression models (a

few metamodels are piecewise linear functions and inverse polynomials).

5.5.1 General Regression Metamodel

The definition of the simulation metamodel is introduced as follows:

Let XX denote a factor i which influences the output of the real world system

(j=1,2,3... r). A factor may be qualitative (e. g. the priority of rules chosen at given work

70

Chapter S: Hybrid Methodology

centres) or quantitative (e. g., the number of machines or operators available, the

expected processing times on given work centres and the partial mix). Normally, the

system has multiple outputs. At present, we can concentrate on single response

variables. Let Y denote the system response variable of interest, which may be

qualitative or quantitative (e. g., the time required to carry out a given production

program). The response variable Y is a function of the factors:

Y=f1(X1X2..... x,) (5.7)

This system is approximated by a simulation model. In this case, Y is a function, say

f2 of s factors XX (j=1,2,3.... s), plus a vector of random numbers v, or:

Y= fz(X1 XZ......... Xj)+v (5.8)

where s is much smaller than the unknown s and v which symbolises the effect of all

factors X in (5.7) not explicitly represented in (5.8). The simulation model, represented

by f2, may be approximated in turn by a metamodel within a specific experimental

area. Thus, if the e denotes the fitting error (the noise) which has expected value zero,

a metamodel may be characterised as in (5.9):

Y=fa(X1, X2..... X.)+e (5.9)

The approach is summarised in Figure 5.8.

71

Chapter 5: Hybrid Methodology

X1
X2 Real World System Yi

Y1 =f1 (x1. x2,..... xr)

X Simulation Model
ýYl

Y1 = f2 (x1, x2,, xs, v)

X1
Metamodel I Yl

Y1 =f3(xl, x2...... xm)+

Figure 5.8 Metamodelling

The metamodel problem is to determine, by using the results of preliminary simulation

experiments, a function f3 so that for given values of the factors Xm, the differences

between estimations of Y using the simulation model and estimation of Y using the

metamodel are as small as possible.

Keijing (1979,1987) demonstrates the application of linear regression techniques.

When Y is quantitative, a first-order metamodel to express the effects of the s factors

would be:

Y=N+PIX1+NX2+.... +PX, +e (5.10)

Least Square is a mathematical, not a statistical problem formula. If the curve is linear

72

Chapter 5: Hybrid Methodology

in the parameters ß, we can find the least square values 0 in any textbook on

regression analysis:

ß=(X, X)''X'Y (5.11)

Under the classic assumptions, the simplest statistical model results that the errors e

are normally and independently distributed with zero means and constant variances a2.

Based on these assumptions, the least squares estimator 0 is the best (minimum

variance) linear unbiased estimator and 0 can be tested through t and F tests.

Ideally it is preferred that an estimation of a2 is not dependent upon the adequacy of

the fitted model. This is only possible when there are several observations on Y for at

least one value of X or when prior information concerning a2 is available. When this

approach can not be used, the estimation of dz is obtained from the residual (RSS) or

error sum of squares. An unbiased estimator of ä2 is

ä2 = MSE=SSE =RSS (5.12)
n-k-1 n-k-1

in which SSE, stands for sum of square en+or, is calculated

SSE "2 _ -Y.)

= Y'Y- ß'X'Y (5.13)

=jY2-ß'X'Y

73

Chapter 5: Hybrid Methodology

5.5.2 Metamodel Validation

Once a metamodel has been constructed, it can be used immediately. However, care

must be taken to ensure that it does not generate misleading or inadequate results. To

ensure the returned metamodel is trustworthy, validation is the most important step.

Several methods can be found, such as split-up, double-cross and others (Montgomery,

1992) (Beck, 1984). In this research, double-cross method has been selected.

5.5.2.1 Metamodel Validation Method

Double-cross method splits the simulation results into two sets that are approximately

of equal size. One is saved for testing the response variable, and the other is used to

construct the metamodel. Two R2 values (for computing the value see the following

section) are then used to determine whether the metamodel is reliable, one from the set

of data selected to develop the metamodel and the other from the saved set of data. If

the two R2 are similar, it indicates that the correlation of dependent and independent

variable is denoted appropriately. Otherwise, the metamodel needs reconstruction by

applying transformation function, or even by going back to re-selecting the input

combinations of the simulation model.

5.5.2.2 Statistical Test

Within the method, statistical tests are used for determine the metamodel reliability. In

74

Chapter 5: Hybrid Methodology

addition, R2 and two other statistical tests are used, that are F- statistic and t-statistic.

9 To measure the overall model utility, the multiple coefficient of determination,

denoted by R2, is calculated by either of the following two equations:

R2 _
Explained Variation

TotalVariation (5.14a)
SSR
SST

or

R2 =1-
Un exp lainedVariation

TotalVariation (5.14b)
1_

SSE

SST

Because 0! 5 SSE : 5. SST, it follows that 0: 5. R2 S 1. A value of R2 that is close to 1

implies that most of the variability in Y is explained by the regression model - the

metamodel. However, since adding an unimportant independent variable will

increase R2 to some extent, it may decrease the usefulness of the model. Therefore,

it is sometimes useful to correct this by reducing R2 appropriately. By doing this, a

adjusted R2, denoted by R2-zq(), is defined as follows:

SSE 2

R "vcýiý = 1-
D

SST
(ERROR) (5.15)

DF(7 rAL)

Explained Variable (SSR) is computed:

75

Chapter 5: Hybrid Methodology

SSR=ý(y; -y)2 (5.16)

and total variation (SST) is expressed as below:

R
SST=ý(y, -y-)2=SSR+SSE (5.17)

here SSE presents unexplained variation.

Moreover, the statistic R2 itself is not enough to determine the reliability of a

metamodel. The sum of squares for regression will increase and the residual sum of

squares will decrease, when a variable is added to the metamodel. The addition of a

regressor also increases the variance of the fitted value y, so a metamodel must be

constructed carefully to include only regressors that are of real value in explaining

the response.

" To help in demmining the value of each of the regressors in the metamodel,

hypotheses are of interest The hypotheses for testing the significance of any

individual regression coefficient, such as ß j, are

Ho: ßj=0

H,: ßj#0

If Ho : Pi =0 is not rejected, then it indicates that the regressor Xj can be deleted

from the metamodcl. The statistic test for this hypothesis is

76

Chapter 5: Hybrid Methodology

to -ý-
S.

(t

j

(5.18)

where SJßi is standard error, and computed as s. (1)
- ä2C,

4. The null

hypothesis HO: ßi =0

5.53 Characteristics of the Metamodel

Since a metamodel developed in this research is used as part of the simulation model

rather than as a post analysis tool, it is clear that the metamodel differs from

conventional ones significantly. Hence, it is necessary to address the characteristics of

the metanwdel:

" It models time elapse. Normally, a metamodel is used to interpret simulation results

in order to gain insight on the simulation. Therefore the ordinary metamoclel

concerns those variables that are of interest in simulation model, where time lapse

is a nxochanism not a reseaivh variable. However, time lapse is included in the

domain of metamodelling in this restarch.

" It possesses not only the characteristics of modelling time lapse but also that of an

ordinary metamodel. Because the metamodel is a substitute for its corresponding

simulation model, it should enable reliable simulation results to be produced. In

other words, it transfers inputs into outputs in quantity and quality as its

corresponding simulation model does. As it has been proved above, this is the

77

Chapter 5: Hybrid Methodology

domain of a conventional metamodel. Put it in simple terms, the metamodel can

generate reliable simulation results as long as it has the characteristics of a

conventional one. Since the metamodel works as part of the simulation model, it

also requires to model time elapse obviously. Hence, the metamodel has a special

dual characteristic.

9 In a conventional way, a metamodel was used as a post analysis tool which is

applied in a separate environment. Although the main aim of the research is to

replace the partial simulation model with a metamodel, the benefit of the research

also lies in employing metamodelling technique consistently in the same

environment - the simulation environment. Once replacement takes place, the

environment is shared between metamodel and simulation model.

"A hybrid is created in which the simulation model and the metamodel are executed

at the same time. When regarded as a post analysis tool in the conventional way, the

metamodel is applied after execution of the simulation model. In other words, the

simulation model and the metamodel are executed in sequence. However,

application of the metamodel in this study produces a hybrid model in which the

simulation model and the metamodel work together as a single unit, therefore, the

metamodel and the simulation model are executed at the same time.

9 The metamodel always follows the independent variable:

queue length

To generate such a metamodel, other independent variables may be coupled with

78

Chapter S: Hybrid Methodology

the above one, that are:

type of job

batch size

The dependent variable of the elapsed time metamodel is

time lapse.

79

Chapter 6: Implementation

Chapter 6

IMPLEMENTATION

6.1 Introduction

The principle of the research has already been explained in chapter 5. This chapter will

examine the implementation method. This chapter starts with a review of the aim of the

implementation. The implementation environment, where the experimental software is

developed, is than examined. Thereafter, the implementation of the hybrid

methodology is described. It is followed by a discussion in which three typical

applications of the simulation cases are analysed. Finally, there is a comparison

between the accuracy of the research results using the software developed by the

author and those using the existing software.

Section 6.4 Implementation of Hybrid Methodology comprises three major sections

which are metamodelling, hybrid modelling and interface specialisation. The

metamodelling section focuses on metamodel construction, metamodel validation and

metamodel replacement. In the hybrid modelling section, the method of setting the

metabox in the simulation environment is discussed. To aid users in applying the hybrid

methodology, the interface has been customised and described at the end of this part.

Through out the chapter, an example is used to illustrate the implementation steps.

80

Chapter 6: Implementation

6.2 The Aim of the Implementation Work

The implementation has the following aims:

1. To demonstrate that the metamodel can be generated with detailed

simulation results and can be used to interpret simulation results in order to identify

significant independent variables. The research work includes:

a- to design detailed simulation nodes with essential features to make zoom

paradigm possible.

b- to design a data collector for collecting simulation results.

c- to design a metamodel generator to evolve a simulation metamodel.

2. To show that a metamodel can be embedded in a simulation environment

W can be used to reduce simulation time significantly. To meet this objective, the

following work has been carried out :

a- to design a metamodel box which can replace the transition box in the IDEM

software.

b- to make the metamodel box editing utility user friendly.

A range of simulation scenarios have been identified and selected for experimentation.

They are described in section 6.4.

81

Chapter 6: Implementation

63 Implementation Environment

6.3.1 The Experimental Software Development Environment

The hybrid modelling methodology is implemented with the help of a prototype

software tool. The software tool has been developed using LISP and LOOPS - Lisp

Object Oriented Programming System. LOOPS is a product of Venue, based on

Medley, and runs on a SUN 4 workstation. Since LOOPS runs in Medley's

environment therefore it has all the Medley environment facilities. They include a

compiler, a debugger, a list structure editor, a text-editor, file browser, class browser

and some others. Because some existing statistical packages are written for MS-DOS

environment, part of the research is to develop a program for implementing the hybrid

modelling methodology, written specifically for LOOPS and running under LOOPS

environment.

IDEM software, which is also developed using LISP and LOOPS, is another part of

the environment where the experimental software works. Because the simulation

model in which the metamodel is embedded is written using LISP and LOOPS, the

Program written for the metamodel has to take the IDEM software structure into

account.

For detailed information about the software development environment of Medley-

LOOPS the readers are referred to Xerox (1988), Stefik and Bobrow (1987), Venue

(1992) and Goddi and Keuneke (1992). The essential concepts of object oriented

82

Chapter 6: Implementation

programming techniques are given in appendix H.

6.3.2 Metamodel Development Environment

A metamodel is derived from simulation results. The more accurate the simulation

results are, the better a metamodel's reliability is. Hence, it is preferred to generate a

metamodel starting from detailed simulation levels. Because the development of the

IDEM tool is to meet the needs for design of manufacturing system at approximate

level (refer to chapter 4), the IDEM tool did not provide those facilities to be used for

constructing a simulation model at detailed level. Therefore, it is necessary to extend

the IDEM tool in detailed simulation level in order to accomplish this research. Figure

6.1 shows the metamodelling program environment and its related environments.

Figure 6.1 Overall Structure of Software Development

83

Chapter 6: Implementation

6.3.2.1 Zoom Node Library

As illustrated in Background (see section 4.2.2), detailed simulation level is also called

zoom paradigm, and the nodes used in the level are called zoom nodes. In order to

construct a detailed simulation model easily, a zoom node library has been added in the

IDEM tool. The concept of the library has also been identified.

Each zoom node is classified by its class structure, shown in Figure 6.2. The figure

also icveals that a zoom node is a sub-class of the IDEM node in terns of the IDEM

box. The IDEM box has a default information structure within. Therefore, the zoom

node inheritsthe information structure from its super-class -- the IDEM box. However,

each zoom node in the library has no features except its presentation image. Hence, it

is necessary to specify the features of the nodes before going forward. Figure 6.3

shows that the icon of the design-node is used in a zoom paradigm.

84

fiäý
V1

ýII Ij
.

\I/ I
\jf V II "I IIiii I

j. I ii

a

z
ei

iE

CT r. AAA

Q1

Gi W
¢1

iA

Nd

94 >
O

rk P4
d fi

(v
P

F4 a,

oVi
ý

imwii

R5

w ~'

V%
0
U

"O
rw

"d it y

**+

w
AAA

Chapter 6: Implementation

6.3.2.2 Zoom Node Specification

To make zoom paradigm modelling possible, two types of zoom nodes have been

developed, they are zoom-stage-process and zoom-router-process. The classes are

described below:

ZOOM-STAGE-PROCESS Description - Flows shipped to self are enqueued

internally if self is busy (ready for processing at a

later time). If self is free and the conditions of the

flow (if there are any conditions) are satisfied the

flow is immediately processed i. e. shipped

internally to the process gate, and then shipped

unconditionally to the single output-gate on

completion of processing i. e. when the time

specified by the private-attribute called

processTime is reached.

Inherits from - Zoom-Process

class variable none

Instance variable image-bm doc "bitmap image for presentation"

localData doc "specification of flows to be

generated by self "

Method none

ZOOM-ROUTER-PROCESS Description - Flows shipped to self are enqueued

87

Chapter 6: Implementation

internally if self is busy (ready for processing at a

later time). If self is free and the condition of the

flow is satisfied (if there are any conditions) the

flow is immediately processed i. e. shipped

internally to the process gate, and then shipped

conditionally via a programmatically selected

output gate on completion of processing i. e.

when the time specified by the private-attribute

called processTime is reached.

Inherits from - Zoom-Process

Class variable none

Instance variable image-bm doc "bitmap image for presentation"

localData doc "specification of flows to be

generated by self "

Method none

The screen dump of their class browser is presented in Figure 6.4. And the icon of

the two nodes is displayed in Figure 6.5.

88

Chapter 6: Implementation

ZOOM-PROCESS

ZOOM-ROUTER-PROCESS

ZOOM-STAGE-PROCESS

Figure 6.4 A Screen Dump of Class Browser

tarp
zu,

lip-

ZOOM-STAGE-PROCESS

ýJ uuýº
ZOOM-ROUTER-PROCESS

Figure 6.5 Icon of Specialised Zoom Node

89

Chapter 6: Implementation

6.4 The Implementation of Hybrid Methodology

6.4.1 The Implementation of Metamodel

Until now, the first stage which implies building a detailed simulation model of

implementing the hybrid methodology, has been explained. The next stage will show

the implementation of a metamodel.

The implementation is based on the concepts and principles described in chapter 5.3.

Refer back to Figure 5.8, a metamodel is an abstract model derived from simulation

results. Hence, a metamodel implementation starts from collecting simulation results.

In order to implement a metamodel, a simulation data collector and a metamodel

generator have already been defined and developed in the experimental software

environment.

The sections below follow the sequence of metamodel construction.

6.4.1.1 The Features of Data Collector

In order to gather simulation data easily and in a user friendly manner, a data collector

has been designed in the experimental software. Taking the advantages of LOOPS, a

data collector is defined as a sub-class of the monitor provided by the IDEM tool.

Therefore, certain functions and rules, which have already been developed for the

monitor, can be adopted.

90

Chapter 6: Implementation

The features of the data collector is classified as generic ones and specific ones. One of

the generic features is to allow the user to choose a region where the user intends to

apply metawodelling techniques. The region can be a whole or part of the sub-system

being investigated. Then the simulation data related to independent variables and

response variables selected in the region are captured.

Another generic feature is to save the data in a file if a user wishes. The file will be

saved automatically in a user defined directory and the user can change their file

directory whenever they like. To enable the metamodel generator to identify this type

of data file, the data file name is assigned automatically with the Meta-Model-Data-File

suffix. Since the date of an experiment and the independent variables selected are

unique symbols of each experiment, they are saved as part of the file name.

In spite of having the above generic features, a data collector is not able to gather the

right data unless it has been told what variables to monitor. Therefore, the selection

mode for both dependent and independent variables is a very important feature as well.

However, detailed explorations of both types of variables can vary tremendously.

Hence, this feature of the data collector has been simplified to a certain degree in order

to execute the embedded metamodel demonstration. The range of variables shown on

the menu is also simplified to this research purpose.

The independent variable is one of these four types: they are WIP (Work. In

piss); WIP and Product Type; WIP and Batch Order Size; and WIP, Batch Order

Size and Product Type. The dependent variables are one of the two types: they are

91

Chapter 6: Implementation

or finish time depending on simulation scenarios discussed in section 6.5.

6.4.1.2 Data Collector Implementation

To add a data collector, the cursor is moved to the map title bar. The select button of

the mouse is used to get the Title Menu, then the Create Monitor item of the menu is

chosen to bring up the Monitor Menu and collector is selected from the Monitor

mau. Now a collector appears in the transition map (the detailed simulation map) and

is waiting to be located in a suitable place. Before the collector is added to the map,

the file directory should be set up from the LISP execution window so that the data file

will be saved into the directory, otherwise, the data file will go into the current user

directory.

After initialising the data collector by Switch On, the user is prompted to choose a

region by selecting nodes and 10 paths, so data from the region only will be collected.

Once flows occur along those selected paths, the collector records the simulation data.

When the user initialises his simulation model, the In dependent Variable Menu is

displayed on the screen for the user to choose independent variable(s). But the

dependent variable is determined automatically, as described before. When the user

resets the simulation, the user will be asked whether to save this set of simulation

results or re-select another set of objects and / or variables.

92

Chapter 6: Implementation

6.4.1.3 The Features of the Metamodel Generator

The metamodel generator have been given the following features:

a- flexible access to data files saved on hardware,

b- capability of generate a metamodel with selected data,

c- capability of validate a metamodel .

Regression analysis is used in this research to generate the metamodel. Certainly, there

are many other methods which can be used such as step-wise and polynomial methods,

but this is out of this research scope. At present, the metamodel generator takes first

order methods to formulate a metamodel.

Another feature is also given to the generator in order to help user to identify the files

easily. That is the saving of additional information associated with a data file. Because

a metamodel is produced from a set of simulation results, the simulation model needs

to be executed several times to create a reliable metamodel. This results in a number of

data files being saved. Obviously, it is difficult to remember the conditions of each

simulation experiment and to distinguish those data files. Therefore, it is necessary to

add this feature.

6.4.1.4 Implementation of Metamodel Generator

To implement a metamodel generator, the Title Menu page (see figure 6.6) is brought

93

Chapter 6: Implementation

up first, then Create Generator is selected to create a metamodel generator instance.

Then it can be added to the map where it is suitable. The system will prompt for a

name to be assigned to the generator, otherwise, no name will be given if the return

key is pressed at the cursor prompt. By selecting a data file, a metamodel can be

generated with the set of data saved in the selected file.

To ensure the right data file is chosen, the user can check the additional information

which describes the assumptions of the simulation experiment associated with the data

Sle. This can be done by selecting describe data file from the Object Menu. The

additional information is entered at the same time as the simulation data is saved.

Validation procedure can be invoked after the metamodel construction by choosing

Validate the Metamodel on the Object Menu.

6.4.1.5 Metamodel Validation

Once the metamodel has been formulated from simulation results, the natural

temptation to use it as it is can be misleading and can result in inappropriate use of the

system's behaviour. Therefore, before the metamodel is used appropriately, the

metamodel has to be validated.

From the many validation methods reviewed in chapter 3, the double-cross method

has been chosen to validate the metamodel in this research. In this method, data is

randomly split into two parts of approximately equal size. A regression model is

94

Chapter 6: Implementation

developed on one half, then used on the other half of the data for testing the response

variable. This enables the experimenter to compute two R2 values, one for the portion

of observation data selected to develop the regression model and the other for the

unselected hold-out portion of data. A comparison on the two R2 values is then made.

If these values are very different, it indicates that the metamodel is probably not valid.

On the other hand, similar R2 values indicate that the correlation of dependant and

independent variables is denoted appropriately, thus the metamodel developed on the

full set of data may be used. However, the "split-halves" should pass one more test

before the full-scale observation data can be used: the regression coefficients of the

two regression metamodels should be checked. If they are very different, especially

with different signs, the metamodel may not be reliable.

Table 6.1 illustrates the results of the double cross validation. The 103 observations

from the same example shown in the above section were randomly split into two

portions with 50 and 53 respectively. In sample I, the R2 value calculated on the 50

observations which were used to generate the model was 0.978, while the results of

the R2 value on 53 "held-out" data was 0.965. In sample II, the respective R2s were

0.97 and 0.981. Figure 6.6 shows the transition map with a metamodel generator

located. By choosing Validation Metamodel from the metamodel generator menu

validity procedure can then be invoked. Validation is based on the metamodel which

was structured by all independent variables or participated independent variables.

95

Chapter 6: Implementation

6.4.2 The Implementation of Hybrid Model

Hybrid model implementation takes place in the IDEM simulation environment. To

achieve the implementation target, a meta box is created at first, and then the meta box

is connected to the rest part of the model. Since the hybrid model is located at an

approximate modelling level, the model can also be viewed in multiple directions.

6.4.2.1 The Features of the Metamodel Box

The requirements of embedding a metamodel in the IDEM simulaaion environment was

described in chapter 5.4.2. Considering the requirements, the author defines and

develops the metamodel box class under the IDEM box. The relationship between the

tnetamodel box and its super class -- the IDEM box is represented in Figure 6.7.

Since both LOOPS and LISP are objected-oriented programming environments, they

support the characteristic of a sub-class inheriting the structures and methods of its

super-class. Therefore, the first requirement, that is a nnetamodel box possessing

matching function and time delay function, can be satisfied.

As explained before, time processing and marching function are separated and

matching function is operated based on given inputs and the software mechanism.

Hence, a metamodel box can meet the second requirement without specialization

because it is a child of the IDEM box.

Same as the second requirement, the metamodel box does not require a specialization

96

Chapter 6: Implementation

Regression Model is :
FinishTime = 16.0063 + 0.99 ATimel + 2.31 WIP1

Predictor Coefficient Stedv t-Ratio
Intercept 16.0063 0.9497 16.85
ATimel 0.99 0.0616 29.20
WIP1 2.31 0.6774 0.0014

R-sq = 0.98 R-sq (adj) = 0.98

Double - Cross Validation of Metamodel

Table 6.1 A Example of Metamodel Validation Results

97

R-sq
Select 0.978 0.97

A00

GÜ
CD

ý, r8

OD GG
lE E

ýýt
U

ýNt
NýN

UUU

wl

LJ

El

t
El

E

F-I

9t,
5

9d C

lull

e V

V

O

i7

Z
0

O

is. E

ký.

Chapter 6: Implementation

to meet the third requirement -- transforming input into output in quality. The reason

has already been explained as above because it is part of the duty in matching function.

The last but not least important requirement is that a metamodel box should produce

an elapsed-time. Since an IDEM box and an IDEM page box have been analysed

previously, the result is that an elapsed-time is a function of total jobs in a system and

time taken by each job. This indicates that a metamodel is a function of queue length of

a system whose variables having effect on the length of a queue, such as type of job,

operation time on each type of job and size of a job. Therefore, if all the jobs in a

system have been recorded when each input appears, and assuming only one type of

job exists in the system, the record can be used to generate a metamodel. It is evident

that the metamodel is able to produce an elapsed-time instead of simulation. Such a

metamodel can create not only an elapsed-time but also ensure that the elapsed-time is

credible. This is guaranteed by metamodel construction method and validation.

Since the queue length has been included in the metamodel, there is a significant

distinction between IDEM box and metamodel box, i. e. number of servers. The

metamodel box has no limitation of server$, or in other words, an input flow is served

fly when it arrives, if there is no condition associated with the flow. If a flow

has a condition, in terms of applying a match function, the flow will be served as long

as the condition is met.

It is clear that the only concern in the mctamodel box is the process time irrespective

of whether there is a flow condition or not. The process time is determined by the

metamodeL

99

Chapter 6: Implementation

IDEFOBOXTERMINATOR IDEMBOXTERMINATOR

IDEFOBOX LIIVEARMETA BOX

WEM BOX

META BOX

Figure 6.7 A Screen Dump of Meta Box Class Browser

A metamodel can vary depending on the dynamic characteristics of a simulation model

and the number of independent variables identified. It is too complex to make an

intelligent system which can transfer all features of a metamodel into a metamodel box

automatically. Hence, only two types of metamodel box, the Linear Meta Box and the

Meta Box, have been developed in the experimental software. The details of the two

boxes are below:

LINEARMETA BOX Description - Flows shipped to self are

immediately processed (shipped internally to the

process gate) if there is no Match function,

otherwise, flows shipped to self are queued to

match first, and then are processed.

Consequently, the flows are shipped

100

Chapter 6: Implementation

unconditionally to the single output-gate on

completion of processing i. e. when the time

specified by the private-attribute processTime is

reached. The dependent variable has a linear

correlation with its independent variables. The

processTime in terns of metamodel is assigned

automatically.

Inherits from - IDEM-BOX

Qass variable none

Instance variable image-bm doc "bitmap image for presentation"

localData doc "specification of flows to be

generated by self

Method none

META BOX Description - Flows shipped to self are

fly processed (shipped internally to the

process gate) if there is no Match function,

otherwise, flows shipped to self are queued to

match first, and then are processed.

Consequently, the flows are shipped

unconditionally to the single output-gate on

completion of processing i. e. when the time

specified by the private-attribute processTime is

101

Chapter 6: Implementation

reached. The dependent variable does not have

linear correlation with its independent variables.

ProcessTime/finishTime should be edited by the

user.

Inherits from - IDEM-BOX

as variable none

Instance variable image-bm doc "bitmap image for presentation"

localData doc "specification of flows to be

generated by self "

Method none

6.4.2.2 Implementation of The Metamodel Box

Once a type of metamodel box has been chosen to replace the detailed sub-system

simulation, the next stage is the running of the hybrid modeL The metamodel box can

be linked with other parts of the simulation model before this can happen. It is

necessary to point out that connection procedures fall in with IDEM simulation

development steps in terms of the information and the dynamic view respaxively.

Information View

In hybrid modelling, the information view means setting information into the

n nodcl box regardless the type of metamodel box. To cope with the IDEM

software, the mctamodel box has to use a certain structure of IDEM box, one of these

102

Chapter 6: Implementation

software, the metamodel box has to use a certain structure of IDEM box, one of these

is localData. Figure 6.8 is the localData of a Linear Metabox. The information

structure of the box has been kept the same as that of the IDEM Box in the simulation

except for the process time which is assigned by the metamodel.

((input inputQueue
(control controlQueue)
(mechanisml mechanismQueue)
NIL LiMetamodelProcessTime

(FLOW output
("Finished")

(modelA 50 II)
NIL destination1))))

Figure 6.8 Example of localData of A Linear Metabox

To input the information into the IDEM Box, the user must name all input flows, name

the gate where a corresponding flow enters, a set of conditions if there are any, as well

as the output flows. Data handling function can also be assigned so that the data is able

to be processed and returned as the user desires.

The information structure of a Meta Box (non-linear) is laid out in Figure 6.9. It is

similar to the Linear Meta Box except for the process time. To set the information in

it, procedures can be taken the same as those in the linear metamodel box.

103

Chapter 6: Implementation

((input! inputQueue
(control controlQueue)
(mechanism! mechanismQueue)
ML MetamodelProcessTimel
(FLOW output

("Finished")

(modelA SO II)
NIL destination!)))

((input2 inputQueue
(contro12 controlQueue)
(mechanism2 mechanismQueue)
NIL MetamodelProcessTime2
(FLOW drawing

("Drawing Set")

((DN301 1) (DN304 1) (DN331 2))
NIL destination2))))

Figure 6.9 Example of localData of A Metamodel Box

Dynamic View

As soon as the information of a metamodel box has been set, the last important step is

to edit the dynamic characteristics of the metamodel box. Those dynamic features

include process time, flow image and flow path name. The process time is central

among those features in the metamodel replacement.

Since limited independent variables have been considered in the experimental software

development, the linear metamodel is very simple. Therefore, in these circumstances,

all the coefficient data of the metamodel has been passed from the metamodel

104

Chapter 6: Implementation

generator into the metamodel box. Calculation of the process time is therefore straight

forward. So the process time in the linear metamodel box is assigned automatically

without editing. However, most simulation situations can not be expressed by such a

simple mathematical model and that the process time can not be generated easily. The

user should edit the process time by selecting the Editing Dynamic Item from the

metamodel box Object Menu. To do this effectively and efficiently, the user is required

to have some knowledge of LISP and LOOPS. Figure 6.10 is an example of the

process time editing window.

Other auxiliary editing is then done before running the hybrid simulation model.

Because the metamodel box is inherited from the IDEM box, flow image a string type

of image - can be edited and changed easily and conveniently as in the IDEM box. The

principle of the metamodel has been described in chapter 5, interaction between the

metamodel box and other objects (H)EM or IDEFOPAGE box) flow paths are

illustrated by an arrow in diagram. Since the simulation controller needs to identify the

correct name of a path to run the simulation model, the name of a flow path in the

metamodel should be kept the same as that in the simulation model before its

replacement. In other words, the path names in diagram. Since the simulation

controller needs to identify the correct name of a path to run the simulation model, the

name of a flow path in the metamodel should be kept the same as that in the simulation

model before its replacement. In other words, the path names in the metamodel

information view should be the same as those in the transition node replaced by.

105

Chapter 6: Implementation

(LAMBAD (self localData flow) ; Edited 26-Oct-94 16: 30
by birg

'To get process time of a meta box. "

(LET ((intercept 20.8)
(PLst (@ self parameter))
(WIP (@ self localQLength))
(type (CAR (@ (@ (@ flow package) datum) data)))
(typeNumberLst (@ self typeList))
(processTime 0))

(SE'PQ processrtme
(PLUS intercept

(PLUS (TIMES type 1.38) (TIMES WIP 2.6))))))

Figure 6.10 An Example of Process Time Editing Window

6.43 Interface Customization

Because the experimental software is developed in LOOPS, all facilities offered by

LOOPS can be used for any particular application, such as the window facilities. An

interface has been developed using these facilities to make implementation of

embedding a metamodel easier. The interface is shown in Figure 6.11. The user

interface is a menu driven application.

The transition map Title Menu brings up the Monitor Menu to add a particular data

collector. The Object Menu of the data collector provides features for the implemented

106

Chapter 6: Implementation

data collector. They are used to define a metamodel. This menu also indicates where

the data file has been saved. The Object Menu of the metamodel generator provides

both the implemented metamodel generating feature and the metamodel validation

feature. The functionality of each Icon Menu can be found in a message that appears in

the black window called the "Prompt Window" whenever the icon is selected and held

with the arrow cursor.

By selecting any icon in any menu, an interactive session with the user will start which

enables the user to query about specific information. A prompt window of the

transition map appears with a question prompt. A "Metamodel Execution Window" is

also automatically opened with the output of the experimental metamodelling results.

The results of metamodel validation are shown in the same window. The window can

be manipulated by an additional menu attached at the top of the window. This

additional menu provides facilities like to clear, close, shrink, move and scroll the

windows.

In the implementation of embedding metamodel, the user identifies the independent

variables in the detailed simulation model, while the data collector asks for the nodes'

information to be attached and the data to be collected. Therefore the nodes and

independent variables must be entered first, and then other functions of the data

collector can be performed.

107

(ýs

ü
aP w c 0-0

1

as

I

Chapter 6: Implementation

The Metamodel Generator queries the user about the simulation data saved and then it

generates the corresponding metamodel by the selected simulation data. The generator

lists all data files with defined file name suffix - IDEM-META-DATA. Once the data

file has been selected, the Object Menu is changed to another view from where the

metamodel can be structured and validated.

The metamodel replacement application starts after the metamodel validity. Now the

user should go back to the IDEM lower level page where the transition node is. By

picking Replace Metamodel on the Transition Node Menu, the metamodel replacement

process is triggered. There are two types of metamodel box for replacement purposes.

They are the linear metamodel box and the metamodel box. The metamodel box can be

gained by dragging the mouse when the replace metamodel item has been selected and

held. The linear metamodel box can be created directly by selecting Replace

Metamodel on the main Transition Node Menu.

6.5 The Experimental Application of the Embedded Metamodel

Figure 5.2 exhibits a scenario where metamodel replacement is carried out. The figure

has shown that the metamodel box works as an IDEM box. As mentioned in chapter 5,

shown in figure 5.5, an IDEM box has two functions, matching and processing. Since a

metamodel box replaces its corresponding IDEM box regardless of the way the

information is arranged around the IDEM box, the replacement does not affect on

matching part of the box activity. So it is only the time attributes which act as response

variable should be considered.

109

Chapter 6: Implementation

On the other hand, an IDEM box is decomposed down to formulate a detailed

simulation model where time attributes are divided into small units and distributed

through the detailed model. Because the nature of input and output information for the

simulation can vary extensively, the formulation of a metamodel becomes extremely

complicated. During the experiments, several simulation scenarios were identified by

the author. Each of them has been analysed individually in the following sections.

6.5.1 Design for One Input and One Output Simulation Scenario in Zoom

Paradigm

The simulation scenario described here is illustrated in Figure 6.12. This case is the

simplest situation from which a metamodel can be generated. There is one input to and

one output from the sub-system, no matter how many nodes are involved and what

lind of routing is related to the nodes. A node can represent a process, a machine, a

cell level, or a worker in an office or in a factory. This research is only interested in

correlation between input and output. Because there is only one exit from in the sub-

system, all the nodes in the sub-system are involved with the process to produce the

output / response. Therefore, all nodes' performance is of interest and monitored.

110

N

A

O

C

C
O

ß
Co

r. r

Chapter 6: Implementation

A metamodel is a simplest equation in terms of only nodes' performance and input flow

time related to the response. The form of the metamodel may be

Y=(3u+ß, x, +ß2X2+. +ßnxig+e (6.1)

X can be either first order or second order. The number of independent variables are

denoted by n.

Taking Figure 6.12 as the example, assuming WIP - work in process - is the

independent variable, the response variable is output flow time. So the metamodel is:

To, = ßo +ßiTv,. ýi +. +(3T. �;,. +E (6.2)

each TP" relies on two time components : waiting time, which depends on the queue

length in the node, and process time. If the process time is fixed, the T, varies with

queue length. The above metamodel can be transferred into:

T, w = (30 + (31WIP1 +. +1T.,;,, +c (6.3)

to simplify 6.3, the metamodel becomes

T. = ßo +ßIWIP +ß2T ,;, +E

WIP denotes all WIP of the sub-system.

(6.4)

112

Chapter 6: Implementation

Since the regression analysis is applied only where simulation is in steady state, it is

obvious that 02 should be 1 or very close to 1. So the above equation is turned into

To., = Io + 11WIP +T,,;,, +e (6.5)

and process time in a box is calculated by

Tpr" T�. - Tom�"
(6.6)

-Ro+R, WIP+e

it is clear that process time varies with WIP only, or to say, it varies with those

independent variables that have an impact on WIP.

6.5.2 Design for Multiple Inputs and One Output Simulation Scenario in

Zoom-In Paradigm

This simulation scenario is exhibited in Figure 6.13. The case can be analysed with the

same method as above, although the metamodel seems to be more complex than the

last case. For example, flow A arrives later than flow B, after each flow has been

processed, eventually they will meet in node S to merge for assembly. If the flow A is

much larger than flow B, it is apparent that output time varies with flow A's arrival

time and operation time at node S. Therefore, the metamodel can be determined based

113

Fo

MM

F4'

N

"

-
Z: 2>Z F

Fa

0

C

C 0

0 a

aý c O
b c
Co h

a c
aý ä

as

ao
GN

Chapter 6: Implementation

on the above exploration as:

T�ý _ Po +ß1WIP +ß2T~ +E (6.7)

here, WIP depends on the arrival rate of flow B and the operation time.

But there is another case with the same layout, that is flow A arrives later than flow B,

but T is greater than T. To observe the performance of node S, flow B is the

key to controlling the output time in the sub-system. So the metamodel looks like:

T.. t = (30 + (31WIP + (32T, +8 (6.8)

here, WIP depends on the arrival rate of flow A and operation time at node S.

So a question arises. Which arrival time (TayA or T.,,;, B) is the independent variable

and the other is a hidden independent variable by means of being expressed by WIP?

After considering all the variables mentioned above, a general metamodel in this case

can be formulated

Tow = ßo + ß, WIP + ß2T A+ 03T, +E (6.9)

Now, applying equation 6.6 to the above equation, the equation 6.7 is

115

Chapter 6: Implementation

T.. t=ßo+f31WIP
+1

2
(MOA + I3IAWIPA + ß2ATivA + eA) (6.10)

+03(ß0a +ßi8WIP8 +ß28T,, 1 +ee
+F.

to re-organise 6.10, it turns into the following form:

Tow =(130+ß2 XßoA+ß3 xß08)

+ß, WIP + ßz X ß, AWIPA + ß3 X ß18WIP8
(ý (6.11)

+F(ý '2 X ß2ATG,
fvA

+ ß3 X ß2BTarrive

+(E+EA+EB)

hence, the equation 6.11 can be simplified to become

Tout = ao+a, WIP +azT,,,; v,, +a3T, v8+8
(6.12)

as mentioned above, both a2 and a3 should equal 1 or be very close to 1. If T4 is
a,,; Y

much greater than T.,;,, 8, a3T.,,,, can be omitted and T,,,;,, 8 can be considered that it

has effect on WIP. If T.,,;, 8 is much greater than Tomi,, A, a2 T4,,;
ß,, can not be omitted and

should be considered having effect on WIP. If flow A and flow B both appear

almost at same time at node S, though the matching function of a box still depends on

the latest flow arrival time, either of them can be used to generate metamodel within

tolerance. In this case WIP varies almost with operation time in the node. It is obvious

that this equation has the same elements as simplest case described in the last scenario.

The operation time in this scenario is:

116

Chapter 6: Implementation

T, =To. -T aim
= a0 + a, WIP +e

or

T, = Tow - T.,,:. s
=Qo+01WIP+ti

(6.13 a)

(6.13 b)

6.5.3 Design for Multiple Inputs and Multiple Outputs Simulation Scenario

in Zoom-In Paradigm

There is another case which often happens in the IDEM simulation model. That is a

multiple inputs and multiple outputs sub-system, shown in Figure 6.14. Following

experience gained from section 6.4.2, the first step to be taken in this scenario is to

divide multiple outputs into several sub-systems each of which has the same multiple

inputs but only one output. The general metamodel of each sub-case can then be

adapted into equation 6.12. The output time for the sub-system can be treated as an

may:

ßrn +ßilWIPl +ß21T_, +ß31Tw,; Y8+£l

(6.14)

ROR + i'IaWIPx + I32lTmrivA + ß3RTanirß + ce

here ß2; and 03, (i = 1, Z n) should be near 1 as well.

The operation time in such metabox could be:

117

Chapter 6: Implementation

The operation time in such metabox could be:

ßm + ß11WIP1 + Cl

ßaa+ßuWIPP+c

(6.15)

118

Fo

F y/

N

u

ug
Ü

F; Ftl

0 I

C
0
eý

h

a
a O

ä
a

b

a a
S

ä
y

ýO

aý

w

chapter 7: Case Study

Chapter 7

CASE STUDY

7.1 Introduction

This chapter reports an industrial case study to demonstrate the use of the hybrid

methodology and to examine the prototype software. The company is introduced

briefly first. Problems and research results are then illustrated. At end of the chapter

knowledge and experience gained from the case study are discussed and some

conclusion restricted to the case study are also reported.

7.2 The Company Description

Morris Crane Ltd. is an international engineering group undertaking design,

manufacture, engineering, project management and construction for a wide range of

industries.

Morris Crane, sited at Loughborough with 300 employees, is profitable. The company

is organised in a hierarchical structure, containing company level, shop level and

machine level. The main activity at the company level is to manage the pre-production

aarvities. The shop used in the company is similar to that of other companies, and

machines carry out the real manufacturing operations on the shop floor.

120

chapter 7: Case Study

7.2.1 Operation of the Company

As an independent trading unit, the company is managed under its own operating

system. The company level consists of several functions, including sales and marketing,

design, production control and engineering and purchasing. The domain of shop level

is around manufacturing system which is organised in a cellular structure. Each cell is

defined as the basic processing unit in the company.

The production of the company is mixed One-Of-a-Kind and Make-To-Stock, based

on the type of product. Once a customer order is received by the sales and marketing

section, a specification list will be passed on to the design office, whilst the estimator

will provide approximate cost on an overall contract if it is not a standard product. The

quote and approximate lead time is then fed back. When an order is confi med, the

contract begins to be processed.

The design section works on an order enquiry or a final contract order. The new

design or modified design is made according to customer specification. When the

drawings are finished, they are released to the production control and engineering

section where a production schedule is produced and the drawings are examined by the

production engineer, while a material requisition list is generated and sent to material

control section.

The production control and engineering section has two functions. The first is to

manage production in both long-term planning and the daily activity on the shop floor.

121

chapter 7: Case Study

Mw second is to manage the material control section. It controls the raw material and

sub-assembly parts released to the shop based on the drawings and the schedule. It

informs the sales and marketing section of transport arrangements as well, when a

finished product meets the customer's requirement and design specification.

The function of the material control section is clear, it includes purchasing material

and parts, receiving goods, release of raw material and finished goods. It has a strong

link with stock where raw material and sub-assemblies are stored and is located at

production shop. The section has another function which is to control and store

completed product.

Depending on the product (wire rope hoist, chain hoist and crane), the manufacturing

activities are operated in two shops. One is for hoist production and the other is for

cane production. The hoist shop comprises three cells, namely fabricate cell, chain

hoist assembly cell and wire rope hoist assembly cell.

7.2.2 Products and Production Procedures

The company produces a wide range of lifting products, including heavy duty,

standard industrial and special-purpose cranes, hand and electric chain hoists and wire

rope hoists. Chain hoists and wire rope hoists are the main product of the company.

Two assanbiy lines produce all kinds of hoists. Although these products differ from

Dach other, the major procedures for the each type of hoist remain the same. Figure

7.1 shows the process procedure of wire rope hoist.

122

O
"r

1ý1

. nn iz

(ý `ý

chapter 7: Case Study

73 The Case Study

The case study had two objectives, these were: 1) to test the methodology established

with realistic industrial data and operational strategies, 2) to analyse performance of

the hoist division where competitive capability is willing to be improved.

73.1 Problem Tackled

In the division, producing a wire rope hoist takes longer than it should. This causes the

company to lose its competitive capability in the market. So, the aim of the study is to

get an insight into the behaviour of the production function and to identify possible

ways of reducing the lead time. The problem identified was as follows:

" shortages are the major production problem because assembly is the biggest

restriction to output growth and it is not easy to buy-in capacity as in the

machine shop

9 parts kitting in bulk batches with too many parts extends lead time and

increases WIP. This causes typical lead times 3-4 weeks in which assembly

activities takes only 3-4 days.

Therefore, effect was first focused on the assembly area. The metamodelling technique

was applied in this area in order to view the behaviour in quantity. After the

exploration of the production assembly area, the stores area was also investigated in

124

chapter 7: Case Study

detail, for two reasons, these being a) the function is relevant to explore the material

shortage problem, b) examining the hybrid modelling methodology in aid of large

system simulation modelling design.

73.2 The Description of Production Function

The production functions in the division are divided into machine shop area, assembly

area, painting area and testing area. The production supervisor is responsible for the

shop control, loading and scheduling of jobs in these areas except for the loading and

scheduling of jobs for the machine shop which is done by Production Control.

Once the Sales receives an order, the Production is announced. The job is then left

until a week before the due date. The weeldy assembly schedule is prepared when a

"W re Rope Hoist Loading Report" is received. This schedule is used to produce

marshalling schedule and daily schedule. The marshalling schedule is sent weekly to the

Store for Kitting. The daily schedule is used to issue "Drawings" and "Part Lists" to

each team for each assembly job. The assembled basic units are then queued in a sub-

assembly bay and wait to final customising assembly. After finishing the customising

assembly, the product is moved into the finishing area for test, painting and f nary

pig.

7.4 Experiment Approach

Initially, a static model of the division was constructed in order to get essential

125

chapter 7: Case Study

knowledge of the manufacturing operation system. After discussion with the manager

and people who had knowledge of the system, the static model was modified. Then,

building a dynamic simulation model started taking the static model into consideration.

Figure 7.2 shows the experimental stages and step-by-step procedure adopted in the

study. The tools used for achieving the objective is displayed in Table 7.1.

Purpose Method / Technique Tool

System description Simulation IDEM software

Metamodel construction Regression analysis Developed by the author

Metamodel validation Double-cross Developed by the author

Table 7.1 Adopted Tools for the Case Study

7.4.1 Simulation Modelling

To carry out the case study, the simulation model was run under the different

conditions which are specified by product type, input data and operation strategies.

The model simulated manufacturing activities of three types of product, particularly in

assembly area. The detailed product structure are displayed in Table 7.2 to Table 7.4.

Table 7.5 shows an example of input information under random process. Other input

information includes customer order information, inventory information and capacity

information. These input values were provided by either accurate data or statistical

data.

126

Chapter7: Case Study

Research Step

Formulate

to
s! "Y

ýV
Ai

"Y
I

ao

'N

00
C

V

an approximate
simulation model

Identify detailed
modelling area

Validate the whole
simulation model

Run the model

Generate
a metamodel

Validate
the metamodel

no

yes

Replace the model
with metamodel

Hybrid Model

Figure 7.2 Execution Plan of Case Study

17

chapter7: Case Study

((A212 1 (NiL)
A410 1 (NIL)
A114 1 (NIL)
A132 1 (A212)
A210 2 (A410)
A143 1 (NIL)
A105 1 (NIL)
A123 1 (A114 A143)
Alll 1 (A132 A105)
A306 1 (Alll)
A214 1 (NIL)

Order A 1 (A306 A 214 A210))

Table 7.2 Componenlsof Product A

«B188 1 (NIL)
B214 1 (NIL)
B234 1 (NIL)
B267 1 (N L)
B256 1 (NIL)
B333 1 (NIL)
B283 1 (NIL)
B202 1 (B214 B267)
B406 1 (B234)
B294 1 (B202 B283 B188 B256)
B211 1 (B333)

OrderB 1 (B211 B294))

Table 7.3 Componentsof Product B

?ý

chapter7: Case Study

((C214 1 (NIL)
C153 1 (NIL)
C312 1 (NIL)
C136 1 (NIL)
C124 1 (C214)
C132 1 (C124)
C111 2 (NIL)
C212 1 (C153)
C118 1 (C312 C136)
C233 1 (C132)
C285 1 (NIL)

OrderC 1 (C285 C111 C212))

'liable 7.4 Componentsof Product C

Input Rules

Order Release Interval:
Assembly Daily Schedule Rule:
Product Release Selection:
Product Inspection Rule:
Product Safety Stock:

10 (POSSION 10)
Duo Date
To shipping
Shipping out

1

Table 7.5 Input Information Under Random Process

Lý

chapter 7: Case Study

Operating strategy is another requirement for the simulation model. The operating

rules include customer order releasing, material control, daily scheduling, inspection

and inventory management. The rule of the daily schedule and assigning of fitters for

each assembly job in queue is based on:

" priority according to due work week,

" priority given to commercial pressure.

The rule of material control is defined:

" re-order level depending on history data,

" release the sub-assembly parts for the high priority jobs.

In the detailed simulation level, independent variables have been identified in order to

study the effect of independent variables on Lead Time - the dependent variable. The

independent variables are Demand, Time for sub-assembly, Time for final-assembly.

This led to a full factor experimental design being applied in the study. It is represented

in Table 7.6 where (+) represents the "upper" and (-) represents the "lower" values of

the independent variables.

Demand Time for sub-assembly Time for final assembly

+ + +

+ + -

+ - +

+ - -

- + +

- + -

130

chapter 7: Case Study

Table 7.6 Experimental Design

The "high" and "low" values of the independent variables are displayed in Table 7.7.

Independent Variable Low Value (-) High Value (+)

Demand 1 4

Time to sub-assembly (6,7) (9,10)

Time to final-assembly (11,13) (17,18)

Table 7.7 Data of Simulation Experiment in Detailed Level

The running of the simulation model was conducted by the Table 7.6. Each

experiment was repeated three times with different rules (means daily scheduling rule

and material control rule) combination and other input data patterns.

7.4.2 Metamodelling

To generate a metamodel, both independent and dependent variables need to be

identified. Considering the problem described above, initial condition data Demand is

transfered into batchSize and producrType form on detailed modelling level in this

case.

131

chapter 7: Case Study

The time for sub-assembly and the time for final assembly can be seen:

T
.., bo =f (WIP, batchSize, productType)

and

T
_, .by=f

(WIP, batchSize, productType)

Therefore, the independent variables were identified as:

Work-In-Progress,

Batch size, and

Product Type

whilst lead time is the dependent variable.

7.5 The Results of Case Study

7.5.1 Simulation Model Representation

A simulation model is created with IDEM software to investigate the exposed

problem. Figure 7.3 to Figure 7.7 represent the approximate model which describes

an overall structure of the company. Because only the assembly area and the store are

of interest in detail, the rest of the simulation model is kept at an approximate level.

The detailed model of the assembly area and the store is illustrated in Figure 7.8 and

Figure 7.9, respectively. The output from the experiment is shown in Table 7.8.

132

F

z 0 0 N

ä
w

Aw ti ý; ý

wC
44

ava pC A

y "" O
- C F ti

yaW ö

yýAa ß
a

P4 P4
hit

aq
d F M

-0
-d

ol

Qý'w i:

^" ä C6

O

ON

I

Fudw
A "'

ya
ýA

yý 'ý ii
w

'ý
ý' 0 om

L c r
i v .y

QU 6 C

aC ti ýn r a?
FQ

"; w

ý 5ýr
A w
w ä

M M

O

O
w
ee

E

O

C26
O

aj

I

a 2

N
X
w
H"
x O
U

ä
P4

W
aQ

I ww
z>

14
öääß

<
...........

x

0
N

h
h w,

Q

c> Z
O w

-4 ca w Aý

p

aH OV

b
bO

a ca

N

Ai
w

F
aa F

ww
ä

eý o

a
w

a

v1 %-,
1

C4 A

ýr

al t
9 mF
O

64 q5
t

O

w

0
u
O
1.0

M

9
P4
as

N

14
id

N

N
0

a

a
a
P4
0

W

F

0

W
A
O

x

i>ý

ýn d d Q1 Q,
4$

H

wd

ý ýW+
GG

25ý ý

W

F'f v
=ý ddw

ýr
.y

d ö'

N

p Aý miL
o

d
U v n W,

CQ
ö ý ä ý

ä d ýö awo
w W aý p0 '>
Aw ýý uc
wý a z
aA

F

a

ý Z >x r
O g

u a<äw

F <ä
_M x E ä

Dý M
a

N ý" Wa
'4

W) O
C+ W .. =

Y
z
O

F
w

gW

a
º'

H
ÄA d A
d F Q

Nz a
IA a

.. WT

pi wmQ ä
w

A ac W
ý4

J

4 ä I "

ý

H

a d P- oe
0v

w u
O w LL

A W
P i . y

G
S0

NN 00
ow H w

b' 1 W A
. ,
pz F o

N

ari

E.

c: o: w:

aý.
Fýý

Gz

>r

,

(ý)8GF
(j)

4,4'

.g(i)
4ia'

T}
JFb

: 66 0 pi *6 0- " 14
E. 0 44 FV Hd9
Z

L) ra 0
OU

m Yn
+

L*8
öw ýt

'^ Ta 8y w ýi" --

yö_j!! as

i _. _. _. _.
J 2

- F' FI aic°1. OuiIAJ
äÄ

11 I"
qo

ü
a

I pý

Any IIA
Z >. ZII

L7 1-4 0 W2
P64

04
b-4

ö

All 00 !~O
F

ýA4a Iq ýýý ýuvý

'ý,
EÖdw

66.

Iq W

öA
~I Ii

11 ;'IWw
A II A

O
4 GO

lw
'16 GO -. 0

-0W
FI

IF n"'

0 E4 I;
II

Zw
wää

Lu
>Fa

II L"
!! a

P4

al p' 40 F

maxH 49 0 9

2:
40

-. w0
qo

aH OUwW

1- 0W,

I
yF

4r*
40 co C, ID w 1.44

w
rA

dFNmyW

U.

wNN ýx ýý ýA
mý Om ö öö« NmO w:

e°p ao .
ý,

aý ýi

t

X
W
H

U

0
d

Lei

A w

a
.4 0.

ý ýw O

4 I40.,
a -4 ä99a

a

. -1

N "ý

Q N

H 9 < p61

2
R

äH
OV
x°

ri

A
P4 t

z

a

a
ýö

a
w
a 0

F
O

iý+

W

}

I .H
M
0

Il

Fw
S'.
W

G'

ar
ýy r

r

.r
I-

h

N

ü

t

64

w

ä
F

T.

49

e

c4
w

H
U
0
A
0
0
cr

a
H
U

W

z

w
a
H

P4 A
0

z

N
bA

N

W a,
ýww F

H
+M

OO m
aa

Fý 1- 1.
ww

F~

ýý +ý
!7N
iii

m

w -L- I
AAA

aý
AAA

o
-4

9 a
44

TTT

a

AAA

04

ti

Zi
40

W

Q'+j
NN

F X3 4

a
ru

aº

FF
y4

F
8

"N

W

aa
aa

AAA AAA

w t+

ý'n N
Im

är
v 0

O

cn

C

m
E

co N
a

ego

> v'
3ý

ia0
ö
as

£' ý, of
3a cr
m "ý FN

O
O

aöaýa
1Q

AAA wiw ä

ON

Ha

W

O

O

a va
a

d
0a O

w
J6JJ6

bö

IA

 O
Oý,

p
D1

O pry
iaa ý º'ý
0
ýn 'w 0

(D 4m. U
ýºAA V NHa

°1

--

chapter 7: Case Study

Demand (+) Time for sub-assembly (+) Time for final assembly (+):

Order A Order B Order C
Run 1 102.0 96.34 121.21
Run 2 104.5 98.22 126.34
Run 3 98.0 97.89 114.01

Average 101.6 97.48 120.52

Demand (+) Time for sub-assembly (+) Time for final assembly (-) :

Order A Order B Order C
Run 1 91.58 86.00 125.88
Run 2 92.1 85.34 124.5
Run 3 90.034 87.292 123.003

Average 91.2 86.21 122.46

Demand (+) Time for sub-assembly (-) Time for final assembly (+) :

Order A Order B Order C
Run 1 100.111 95.3 118.4
Run 2 102.2 95.8 117.89
Run 3 100.1 96.1 119.09

Average 100.8 95.7 118.46

Table 7.8 Simulation Results

Iuv

chapter 7: Case Study

7.5.2 Development of Metamodel

Figure 7.6 shows this detailed sub-system is a multiple inputs and one output case.

Before developing a metamodel, simulation results of the dependent variable and the

independent variables must be available. Obviously, the value of the independent

variables identified in section 7.4.2 can be captured directly, but the dependent variable

cannot be gained directly. It is therefore necessary to analyse how to get the values of

the dependent variable.

Logically, the assembly activities start when the schedule arrives at the shop, assuming

the drawings should be sent with the schedule, and materials/parts will be received

soon after the schedule arrival. Therefore, the scenario can be simplified as one input

and one output case. The lead time is T,,, o�t_�k, # -
T,, dk_,,.,;, a, .

Both output release

time and schedule arrival time can be captured from the simulation model directly. ff

there is a shortage of materials or parts, the lead time is extended because output

release time is delayed.

After a set of simulation experiments, which is conducted by a experimental design

table shown in Table 7.6, the metamodel is formulated and illustrated as below:

LT = 15.2 + 8.02WIP + 3.6B + 3.03P + 0.22B xP (7.1)

141

chapter 7: Case Study

7.5.3 Validation of Simulation Model and Metamodel

To validate the simulation model, the company's manager was consulted and the real

data was compared with the data generated by the simulation model.

At this stage, different input data combinations were selected and entered into the

simulation model, this resulted in a great deal of simulation outputs. Through the

communication with the company manager, who has the knowledge of the system. The

simulation model was then modified in both structure and information. Eventually the

simulation model was validated.

As described in chapter 5, a user friendly validation function has been included in the

experimental software. Therefore, selecting Validation Metamodel from the menu

accomplished the purpose. The validation results are displayed as follows:

Sample I/ Coeff Sample II/Coeff

Intercept 15.1 15.06

WIP 8.0 8.1

Batch size 3.55 3.6

Product type 3.0 3.02

R-sq

Selected 0.799 0.80

Unselected 0.81 0.78

Table 7.9 Validation Results

142

chapter 7: Case Study

From the above Table , two R2s are similar. It implies that the metamodels are valid.

Although the regression model was highly significant (F-ratio = 7.9 and p= 0.001) and

a reasonably high value of R2 = 80 was obtained, s2 value was 0.564, which was

considered high. To ensure the prediction was reliable from the model, the model

assumption, namely constant variance checking, was carried out next.

A constant variance check was made by regressing the square of residuals on 3

variables. SSreg for this was found to be 8.19. The following calculation was carried

out:

S=
I SSna(n

Z)2 2 (n - p)s

where n= 96 (number of observation)

p=3 (degrees of freedom)

s2 = 0.564 (MS residual)

SSreg = 8.19 (SSreg of residual square).

(7.2)

'T'his value was checked against the x2 value at 95 per cent confidence level.

Xao5.4 =14.86

As S< x2, the null hypothesis which states that the variance is constant, was accepted.

Therefore, the metamodel is reliable if it is used as a predictive model.

143

chapter 7: Case Study

7.5.4 Hybrid Model vs. Simulation Model

The following step in the case study was to replace the detailed simulation model with

its corresponding metamodel, expressed in Equation (7.1). The replacement was

accomplished through the menu which was written as part of the research. When the

metamodel was inserted into the simulation model, the hybrid model was obtained and

tested. The results of running the hybrid model are shown in Table 7.10. Comparing

the results obtained through the simulation model, see Table 7.8, the average deviation

was found to be within 1.79 per cent, shown in Table 7.11. Therefore, it proves that

the hybrid model can predict equivalent results to those predicted by the simulation

model.

In order to test the methodology as an aid for large system design, another box has

been selected for detailed investigation after the replacement. This detailed simulation

model is illustrated in Figure 7.9. The experiment was carried out through two models

with the same input pattern. One model is the simulation model in which the

manufacturing box was kept as the detailed simulation model. The other was the

hybrid model in which the manufacturing box was replaced by its corresponding

metamodel. The average time spent in generating a simulation output was observed. If

a large simulation model is used, obviously, the hybrid model can save significant

computing times.

144

chapter 7: Case Study

7.6 Case Study Experience

Through this case study, the author gained certain knowledge and experience. They are

not only related to the manufacturing fields but also to the simulation techniques. They

are:

" Priority given by order can only satisfy the particular order, and it causes more

delay to the other orders. Therefore, daily schedules should be based on kits with all

parts available for assembly.

9 Do not start partial assembly if there is a shortage of parts to complete a assembly

job. Only if there is not any order with complete materials available for assembly.

Stores should advise production control if there is a materials/parts shortage. By so

doing, the daily schedule can be changed in order to save the assembly capacity and

to avoid increasing WIP.

" Different rules can greatly influence the system performance. For instance, the

scheduling rules at the assembly area can effect the performance of finishing time.

" Approximate modelling can help to build the simulation model and analyze the

system's overall performance quickly. This is useful for system design, particularly

at an early design stage. This can lead to identification of further areas for

investigation by detailed modelling.

145

chapter 7: Case Study

9 The case study experience has shown that the management of the data base in the

model at the approximate level is efficient. Since detailed modelling requires more

data than that of in approximate modelling level, some data has to be modified in

the model. Therefore, the study has indicated that the modification utility needs to

be improved to assist users who have less knowledge of LISP and LOOPS to

change data easily.

7.6 Conclusion

This chapter has described the use of the prototype hybrid modelling software to

simulate a large system. The case study has provided an opportunity to design a large

system using the hybrid simulation technique. In particular,

" It demonstrates that the hybrid methodology has distinct advantages over

conventional system design methodology. The computation time consumed has

decreased when the hybrid model was running.

9 The model indicates that the information system of the company, especially in

material control, needs to be modified in order to overcome the material shortage

problem.

146

chapter 7: Case Study

Demand Time for
Sub-assembly

Time for Final
Assembly

Lead Time

+ + + 99.6
+ + - 92.0
+ - + 101.28
+ - - 81.2
- + + 26.88

- + - 23.0

- - + 23.9

- - - 23.79

Table 7.10 Results of Hybrid Model

Simulation Hybrid Model Deviation (per cent)

101.6 99.6 3.2
91.2 92.0 1.35
100.8 101.28 0.7
79.6 81.2 2.68
26.76 26.88 0.8
22.7 23.0 2.13
24.28 23.9 2.66
23.9 23.79 0.79

Average: 1.79

Table 7.11 Hybrid Model Results
Vs Simulation Model Results

147

chapter8: Evaluation and Discussion

Chapter 8

EVALUATION AND DISCUSSION

8.1 Introduction

Chapter 7 elicited some results on the major features of the research work based on the

case study. This chapter will illustrate the achievement of the research itself. In the

meantime, it also identifies the limitation of the research, provides some clues to

requirements for the further developments and points out the potential directions of

future research works. Hence, this chapter aims to appraise the research work

exhibited in this thesis critically.

8.2 The Achievements of the Research

From the descriptions of the research principle and research implementation, and from

the demonstration of the metamodel application, this research has succeeded in making

significant progress on modelling a larger system with less computer time and cost.

The major achievements are:

It proposes and demonstrates a new system design methodology, called the

hybrid methodology, which integrates the capability of simulation modelling

and mathematics modelling. It accomplishes a desire to model a system with

simulation technique and mathematics in a single environment. With this

148

chapter8: Evaluation and Discussion

method, behaviour of a larger system can be examined in more detailed areas.

" The research identifies that the hybrid method has achieved in reducing the

requirement of computer time and cost. Although model validation is a very

important stage, it has always represented a serious time-consuming problem,

particularly when a large model needs to be validated. This research has

contributed to improve the situation.

" Metamodel, which is constructed here with the regression analysis method, can

be trusted. The results of the case study certify that a metamodel can be used to

generate reliable simulation results both in quantity and quality.

83 The Limitation of the Research

Since certain conditions and assumptions have been made, this research is subject to

the following limitations:

1. The assumptions of simulation model

The assumption of this study is that the simulations are at steady-state. Transient

behaviour of a simulated system must be omitted so that regression analysis can be

used. If the transient state is included, it is too difficult to find a solution or may be

impossible to have one by using regression analysis. In this case, other methods for

metamodelling construction may be required.

149

chapter8: Evaluation and Discussion

2. The software and hardware constraints

The software limitation is the constraints of the prototype software development

environment - LISP and IDEM. LISP is an advanced programming language in

knowledge representation, yet it has less functionality in algebra. This causes more

difficulties in developing an efficient metamodel generator. Although there are

many existing statistical packages available, they can not be run under LISP

environment.

However, it is necessary to point out that this limitation has no effect on the

principle of the hybrid methodology, because the principle is based on the basic

simulation principle and metamodel concept (refer to chapter 5). Since the

prototype software is developed in a LISP environment, the limitation does have

the sole impact on the demonstration software.

The other disadvantage is the limitation of computing power. The available

computer facilities cannot run a complicated model with a large amount of

processes efficiently. In other words, it is easy to model a system which contains

similar processes or sub-processes. This makes a restriction on the IDEM software

itself and narrows down the exploration boundary of a simulation model.

Therefore, these software and hardware constraints have reduced the accuracy

level of the metamodel.

150

chapter8: Evaluation and Discussion

8.4 Discussion

In terms of factory design, it involves many different aspects such as time attributes on

shop control, human resources in office design, impact of material shortages in shop

floor, purchasing cycle and so on. However, the regression analysis can only identify

the most critical independent variables which affect the response in steady state. It is

not suitable when the system is in transient behaviour state, such as the impact of

machine broken down on shop floor.

Clearly, one of the further study directions is to research on constructing metamodels

with time series. The reason is that time is a vital independent variable in any

manufacturing system. The method used to formulate a metamodel should be able to

reveal time attribute explicitly, and time series method can meet the requirement.

Due to the time constraints, many other valuable areas have not been explored. They

are:

1) impact of metamodels generated through other methods

2) interpretation facility, and

3) delivery of expert systems to enrich the usage of metamodel

In the current research, the metamodel generator works according to the principle of

regression analysis method. Thus, there is need for research on the impact of

metamodel generation with other methods such as piece wise.

151

chapter8: Evaluation and Discussion

Because embedding a metamodel in simulation is the central issue in this study, further

explorations of the metamodel usage are beyond the research objectives. However, the

metamodel can be enriched in many areas, such as adding an interpretation facility

which can suggest further simulation investigations in order to justify the simulation

model. Although many authors have concluded that metamodels can play a role

guidance to conduct further simulation studies, a comprehensive system has not been

found to help the user for this purpose. Since the metamodel has already been formed,

it is worthwhile and possible to develop a good interpretation facility to assist the

researcher for this purpose.

One of the aims of user interface is to ease metamodel validation. Although the

program written for the research can validate the metaniodel, it still requires a user to

have comprehensive statistical knowledge to verdict their model's validity. Since the

supporting theories are mature, the metamodel validation utility should be

customerized further to assist users who have less statistical knowledge to validate

their metamodel.

Another aim is to re-use those valid metamodels. Since several sub-systems of a larger

system can have similar or even the same processes, a metamodel for the sub-system

only needs to be generated once and then applied several times. It is not necessary to

run the same simulation model of a sub-system more than once for obtaining the same

metamodel.

One of the major benefits of using simulation is that it takes into account the dynamic

152

chapter8: Evaluation and Discussion

behaviour of the system studied. Several authors have considered that this dynamic

behaviour is a particular type of knowledge (O'Keefe, 1986). Normally, description of

the knowledge in simulation is in "what-if' form. However, this form cannot deal with

these cases in which a situation is between two conditions, and it takes more time to

get the right knowledge if the knowledge is at end of a large knowledge base. As we

know that a metamodel is another kind of knowledge representation, it is possible to

save a valid metamodel and re-use it when appropriate.

153

chapter9: Conclusion and Further Work

Chapter 9

CONCLUSION AND FURTHER WORK

9.1 Introduction

This chapter summarises the research work. It discusses the contributions related to

the use and enhancement of the hybrid approach to design larger systems. It also

recommends further studies in which research can be carried out to improve

implementation based on the achievement of this research and to explore in design a

new system with dynamic events.

9.2 Original Contribution

The originality of the work is embedding a metamodel in simulation so that a

large system can be modelled. The research work has proved that the hybrid

methodology is capable of facilitating the delivery of a new system design

approach, which possesses both the advantages of simulation and of

mathematical modelling.

93 Summary of the Research Results

Having achieved the objectives set at in section 2.3, the detailed contributions of this

research are:

154

chapter9: Conclusion and Further Work

" The research has proven, via the development of the embedding metamodel,

that it is a feasible practice to encapsulate the functionality of a mathematical

model within a discrete event simulation environment.

" The research has produced a metamodel generator as a partial solution, which

needs to be addressed in the implementation of the consistency of modelling.

The contributions also include: a) a data format to be used either in metamodel

generation or in simulation reporting, b) a user-friendly interface.

" In meeting the project requirements in the IDEM methodology, the research

has fulfilled a bottom-up approach for system design. This work has achieved

the project targets as a whole and suggests a systematic bottom-up approach

for system design.

. The research has also contributed towards the advancement of the IDEM tool

in terms of enhancing the function of the IDEM node. The improvement of the

IDEM tool achieved by this work is not only in zoom-in paradigm level but

also in approximate modelling level.

9.4 Further Work

The following sets out further research work required along the hybrid modelling

approach:

155

chapter9: Conclusion and Further Work

9 One direction is to formulate metawodels by the time series method, so that the

metamodel formulated either from regression analysis or from time series can

be applied into a system performance according to its purpose.

" Because there are certain statistical packages available which possess more

functions and diagram facilities, it should be noted that it is worthwhile to

adopt them rather than to spend time on doing the same work. Therefore, it is

clear that the second direction is to develop a cross-bridge program by which

the user can use other existing statistical packages, such as SAS, StaticGraph,

straight away.

" As the metamodel has been obtained, acceptance of the model will be

determined by lack-of-fit test. An interpretation utility with a data-base and

knowledge-base should be developed to help the user to determine the

accuracy of the model and the necessity of creating a new model.

Research into response surface method, and apply it into the system design to

yield optimal results. As knowledge obtained can be saved into the knowledge

base, the model can then be restructured and run under different explorations.

9.5 Conclusion

From the research results of the embedded metamodel in simulation environment, it is

clear that this study has offered a new approach in system design and demonstrated its

156

chapter9: Conclusion and Further Work

potential value. Traditionally, it has been difficult to design a larger system, mainly

because of the lack of an appropriate methodology and disadvantages of simulation.

The research work has contributed significantly to the solution of those difficulties. In

addition, a prototype hybrid modelling tool has been developed. The tool

demonstrates the methodology by which embedding a metamodel in the simulation

environment can be accomplished and is a new powerful way in system design.

157

Reference

REFERENCE

Anon, 1985, Medley Reference Manual Volume 1: Language. Venue.

Anon, 1985, Medley Reference Manual Volume II: Environment Reference. Venue.

Anon, 1985, Medley Reference Manual Volume III: I/O Reference. Venue.

Appel, S., Ayel, J. and Laurent, J. P. et al., 1989, Controller Module for Coordination

of Supervision Activities on Production Management Systems. Computer

Integrated Manufacturing (Ed. Halatsis, C. and Torres, J.), Proc. of the 5th CIM

Europe Conference, 17-19, May, 1989, Athens, Greece, pp. 3-14.

Baines, R. W. and Colquhoun, G. J., 1990, IDEF0 an Integration and Design Tool for

Engineers. Assembly Automation, Vol. 10, No. 3, pp. 141-145.

Banks, J. and Carson II, J. S., 1986, Introduction to Discrete-event Simulation. 1986

Winter Simulation Coherence Proceedings (Eds. Wilson, J. R., Henriksen, J. O. and
Robert, S. D.), Dec. 8-10, Washington D. C., U. S. A., pp. 17-23.

Beck, K. N., 1984, Validating Regression Procedures with New Data, Technometrics,
Vol. 26, No. 4, pp. 331-338.

Beerel, A. C., 1987, Expert System: Strategic Implications and Applications. Ellis

Horwood Limited, pp. 10-85.

Begg, L. M. and Worsley, C. P., 1989, AUDITION--an intelligent simulation

environment, Simulation and Al, Proc. of the SCS Western Multiconference, San

Diego, California, Simulation Series, Vol. 20 No. 3 July, pp. 71-76.

R-1

Reference

Ben-Arich, D., 1986a, Knowledge-based Control System for Automated Production

and Assembly. Modelling and Design of Flexible Manufacturing Systems (Eds.

Kusiak, A.), Elsevier Science Publishers B. V., Amsterdam, pp. 347-365.

Ben-Arieh, D., 1986b, A Knowledge-based System for Simulation and Control of

FMS, 2nd Int. Conf. on Simualtion in Manufacturing, IFS Ltd., pp. 13-21.

Blanning, LW., 1975, The Construction and Implementation of Metamodels.

Simulation, June, pp. 177-184.

Bitran, G. R. and Chang, L., 1987, A Mathematical Progamming Approach to a

Deterministic Kanban System. Management Science, Vol. 33, pp. 427-441.

Booch, G. 1991, Object Oriented Analysis and Design With Applications. Second

Edition, The Benjamin/Cummings Publishing Company, Inc.

Bravoco, R. R. and Yadav, B., 1985a, A Methodology to Model the Functional

Structure of an Organization. Computers in Industry, Vol. 6 pp. 345-361.

Bravoco, R. R. and Yadav, B., 1985b, A Methodology to Model The Information

Structure of an Organization. Journal of Systems and Softwares, Vol. 5, pp. 59-71.

Bravoco, R. R. and Yadav, B., 1985c, Requirement Definition Architecture - An

Ova view. Computers in Industry, Volk, pp. 237-251.

Brininger, D. R. and Krishnaiah, P. R., 1983, Time Series in the Frequency Domain.

Handbook of Statistics, no. 3. North Holland, Amsterdam.

Buzacott, J"A., 1985, Modelling Manufacturing System. Robotics & Computer-

Integrated Mans factuirng 2(1), pp. 25-32

Carrie, A., 1988, Simulation of Mani¢acturing Systems. Wiley.

R-2

Reference

(iampeaux, D. D. and Fanrc, P., 1992, A Comparative Study of Object-oriented

Analysis Methods. Journal of Object-Oriented Progranndng, March/April, pp. 21-

33.

Qaharbaghi, K., 1990, Using Simulation to Solve Design and Operational Problems.

Int. J. Operational and Production Management, Vol. 10 No. 9, pp. 89-105.

chaharbaghi, K., 1991, DSSL II: A powerful Tool for Modelling and Analysing

Complex Systems. Int. J. Operational and Production Management, Vol. 11 No. 4,

pp. 44-88.

Chen, 1. H. and Talavage, J., 1982, Production Decision Support System for

Computerized Manufacturing Systems. 1. Mani¢acturing Systems, Vol.! No. 2, pp.

157-167.

Cochran, J. K., 1988, Techniques for Asscertaining the Validity of Large-scale

production Simulation Models. Int. J. Prod. Res.. Vol. 25 No. 2, pp. 233-244.

Cochran, J. K. and Chang, J. C., 1989, Optimization of Multivariate Simulation Output

Models Using a Group Screening Method. Computers & Inductrial Engineering.

Vol. No. ,

Colquhoun, G. J., Gamble, J. D. and Baines, R. W., 1989, The Use of IDEFo to Link

Design and Manufacwirng in a CIM Environment. Int. J. Operation and

production Management, Vo1.9 No. 4, pp. 48-65.

Colquhoun, GJ., Baines, R. W. and Crossley, R., 1993, A State of the Art Review of

IDEFO. Int. J. Computer Integrated Mant¢acturing, Vol. 6 No. 4, pp. 252-264.

R-3

Reference

Cook, H. E., 1992, Organizing Manufacturing Enterprise for Customer Satisfaction.

Mondfactoring System (Ed.) by Heim, J. A. and Compton, W. D., National Academy

press, pp. 116-127.

may, W. and E. Vaccari, 1989, Dynamic Models and Discrete Event Simulation.

New York: Marcel Dekker.

Doumeingts, G., Danicau, D. and Berard, C. et al., 1987, Design of Advanced

Manufacturing Systems Using Al Techniques. Proc. IXth ICPR, Aug. 17-20,

(: incinnati, Ohio, U. S. A., pp. 1-7.

Felix, T. S. Chan and Smith, A. M., 1992, Simulation Aids JIT Assembly Line

Manufacturing: A Case Study. Int. J. Operations and Production Management,

VoL13 No. 4, pp. 50-74.

pes, LW., 1984, Establishing Functional Relationships in Multiple Response

Simulation: The Multivariate General Linear Metamodel. Proceedings of the 1984

Winter Simulation Coi¢erence, Scoicty of Computer Simulation, pp. 285-289.

griednnan, LW., 1986, The Analysis of Multiple Response Simulation Output Data:

Experiments of Comparison. Computer & Operations Research, Vol-13, No. 6,

pp. 647-652.

Friedman, LW. and Friedman, LH., 1984, ride. J. of Statistical Computer

Simulation., VoL19, No. 3, pp. 237-263.

grdnntn, L. W. and Friedmann, LH., 1985, Validating the Simulation Metamodel:

Some Practical Appraches. Siinulation, VoL45 No. 3, pp. 144-146.

(3cmion, A. M., 1976, The Purpose of Mathematical Programming Is Insight, Not

Numbers, Interface, VoL7, No. 11, pp. 81-92.

R-4

Reference

Goddi, P. and Keuneke, A. M., 198*, Medley Lisp Development Environment. IEEE

Computer Society. August.

Goh, A. S., 1994, Step Toward the Design and Control of a New Generation of
Machines. PhD thesis, Loughborogh University of Technology.

Goldstein, G. B. and Dushane, T., 1976, Repro-modelling Applied to the Simplification

of Taradcom Computer Models. Report No. 12243, US Army Tank/Automotive

R&D Command, USA.

Goyal, S. K., Deshmukh, S. G. and Babu A. S., 1991, Analysis of Integrated

Procurement - Production Systems Using Mathemathical And Simulation Modelling

Approaches. Production Planning & Control, Vol. 2, No. 3, pp. 257-264.

Hannan, E. J. Krishnaiah, P. R. and Rao, LM., 1985, Time Series in the time Domain.

Handbook of Statistics, no. 5. North Holland, Amsterdam.

Hanson, W. C., 1992, The Integrated Enterprise. Manz factoring Systems, Ed. by

Heim, J. A. and Compton, W. D., National Academy Press, Washington, D. C.,

pp. 158-165.

Halley, D. J. and Pirbhai, I. A., 1987, Strategies for Real-time System Spececation.

Dorset House.

Hicks, C, Braiden, P. M, and Simmons, J. E. L., An Assessment of the IDEFO

Methodologies and Their Suitability for Modelling CAPM Systems. CAPM Project

Tears Working Paper, Durham and Newcastle University.

mann, A. Q. Stanley, G. M. and Hawkinson, L. B., 1989, Object Oriented Models

and Their Applications in Real time Expert System. Simulation and Al, Proc. of the
SCS Westen Multiconfexene, San Diego, California, Simulation Series, VoL20

No. 3 July, 1989, pp. 27-32.

R-5

Reference

Ignaü, E. J., Kolesar, P. and Walker, W. E., 1978, Using Simulation To Develop and
Validate Analytic Models: Some Case Studies. Operations Research, Vol. 26, No. 2,

pp. 237-253.

Ip, WH., 1993, The Application of Time Series Models in MRP Simulation. PhD

Thesis, Loughborogh University of Technology.

Jenkins, G. M. and Watts, D. G., 1968, Spectral analysis and its applications. San

Francisco, CA. Holden-Day.

Jiao Hong, 1991, Integrated Knowledge Based Hierarchical Modelling of

Manufacturing Organizations. PhD Thesis, Loughborogh University of Technology.

Jorysz, H. R. and Vernadat, F. B., 1990a, CIM-OSA Part 1: Total Enterprise Modelling

and Function View. Int. J. Computer Integrated Manz factoring, Vol. 3, No. 3 and 4,

pp. 144-156.

Jorysz, H. R. and Vernadat, F. B., 1990b, CIM-OSA Part 2: Information View. Int. J.

Computer Integrated Man4acturing, Vol. 3, No. 3 and 4, pp. 157-167.

Jothishankar, M. C. and Wang, H. P., 1993, Metamodelling a Just-in-time Kanban

System. Int. J. Operation Production and Management, Vol. 13 No. 8, pp. 18-36.

Khoshnavis, B. and Chen, A. P., 1986, An Expert Simulation Model Builder.

Intelligent Simulation Environment (Eds. Luker, PA. and Adelsberger, H. H.),

Simulation Series, VOL 17 No. 1, Proc. of Conf. on Intelligent Simulation

Environment, 23-25 Jan. 1986, San Diego, California, USA. pp. 129-132.

Kkijnen, J. P. C., 1979, Regression Metamodels for Generalising Simulation Results.

IEEE Transactions on Systems, Man and Cybernetics, Vol-9 No. 2, pp. 93-96.

R-6

';

Reference

IQeijnen, J. P. C., 1987, Statistical Tools for Simulation Practitioners, Marcel Dekker,

New York, NY.

Klittich, M., 1990, CIM-OSA Part 3: CIM-OSA Integrating Infrastructure - The

operational Basis for Integrated Manufacturing Systems. Int. J. Computer

Integrated Manz acturing, Vo1.3, No. 3 and 4, pp. 168-180.

Korson, T. and McGregor, J. D., 1990, Understanding 00: A Unifying Paradigm.

Communications of the ACM, VoL33, No. 9, pp. 41-60.

Kreuter, W., 1986, System Simulation: Programming Style and Languages, Addison-

Wesley, pp. 1-40.

Kuei, Chu-Hua and Mad u, GN., 1994, Polynomial Metamodelling and Taguchi

Designs in Simulation With Application to the Maintenance Float System.

European Journal of Operational Research, Vol. 72, No. 2, pp. 364-375.

IA a and Peart, R. M., 1989, PROLOG For An Integrated Simulation and Expert

System Advances in AI & Sirnukt ion, Proc. of the SCS Multiconference on AI and

Simulation, 28-31, March, 1989, Tampa, Florida, pp. 6-11

Langen, P. A., 1987, Application of Artificial Intelligence Techniques to Simulation.

Simulation and Al (Eds. Luker, PA. and Birtwistle, G.), Simulation Series, VoL 18

No. 13, Proc. of Conf. on Al and Simulation, 14-16 Jan. 1987, San Diego,

California, pp. 49-57.

Lltvery, RG., 1986, Artificial Intelligence and Simulation: An Introduction. 1986

Winter Simulation Coherence Proceedings (Eds. Wilson, JR., Henriksen, J. 0. and

Roberts, SD.), Dec. 8-10,1986, Washington, D. C., U. S. A., pp. 448-452.

Law, A. M., 1986, Introduction to Simulation: A Powerful Tool for Analyzing

Complex Manufacturing Systems. Industrial Engineering, May, pp. 46-63.

R-7

Reference

Law, A. M. and W. D. Kelton, 1979, Confidence Intervals for Steady-state

Simulations, I. A Surrey of Fixed Sample Size Procedures. Technical Report 78-5,

Department of Industrial Engineering, University of Wisconsin, Op. sp 1.

Li, L. and Chiu, F., 1993, Menufactuirng Cell Operating Characteristics. Europe

Journal of Operational Research, 69 pp. 424-437.

Lim, B. S., Marshall, G., Kellett, J. M., Kuczora, P. W. and Boardman, J. T., 1987, A

foundation for a Knowledge Based Computer Integrated Manufacturing System.

Proc. 4ht European Conf. on Automated Manufacturing, May, pp. 459-474.

Love, D. M., Barton, J. A. and Cope, N., 1992, Whole Business Simulation And

Engineering Applications. Eight International Conference Computer-Aided

Production Engineering, Edingburgh, August, pp. 166-173.

Mackulak, G. T., 1983, An Examination of the IDEFo Approach Used As A Potential

Industry Standard for Production Control System Design. Automated

Manufacturing (Ed. Gardner, L. B.), A Symposium Sponsored by ASTM

Committee E-31 on Computerised Systems, 5-6 April, 1983, San Diego, California,

pp. 136-149.

Madu, C. N. and Chanin, M. N., 1992, A Regression Metamodel of a Maintenance

Float Problem with Erlang-2 Failure Distribution. Int. J. Prod. Res., Vol. 30, No. 4,

pp. 871-875.

Maxwell, W. L., Muckstadt, J. A., Thomas, L. J. and Van der Eecken, J., 1983, A

Modelling Framework For Planning and Control of Production in Discrete Parts

Manufactuirng and Assembly Systems. Interfaces, Vol. 13, pp. 92-104.

R-8

Reference

Meisel, W. S. and Collins, D. C., 1973, Repro-modelling: an Approach To Efficient

Model Utilisation and Interpretation. IEEE Transactions on Systems, Man and
Cybernetics, SMC-3 (4), pp. 349-358.

Meyer, W. and Isenberg, R, 1987, Aspects of Knowledge-based Factory Supervision

System. ESPRIT '87 Achievements and Impact, Part 2, North Holland, pp. 1671-

1689.

Monarchi, D. E. and Puhr, G. L, 1989, A Research Typology for Object-oriented

Analysis and Design. Communications of the ACM, Vol. 35, No. 9, pp. 35-47.

Montgomery, D. C. and Peck, E. A., 1982, Introduction to Linear Regression Analysis,

Wiley, New York.

Montgomery, D. C., 1991, Design and Analysis of Experiments, John Wiley & Sons.

Montgomery, D. C., 1992, Introduction to Linear Regression Analysis, Wiley, New

York.

Mujtaba, M. S., 1994, Simulation Modelling of a Manufacturing Enterprise with
Complex Material, Information and Control Flows. Int. J. Computer Integrated

ManWacturing, Vol. 7, No. 1, pp. 29-46.

Neter, J. W. Wasserman and M. IL Kutner, 1985, Applied Linear Statistic Models.

Sow d cd Homewood, IL: Richard D. Irwin.

Newbold, P., 1981, Some Recent Developments in Time Series Analysis. Int. Statist.

Review, VoL49, pp. 53-66.

Newbold, P., 1984, Recent
.
Developments in Time Series Analysis. Int. Statist. Review,

VoL52, pp. 183-192.

R-9

Reference

O'Keefe, 1986, Simulation and Expert Systems: A Taxonomy and Some Examples,

Simulation, 46, pp. 10-16.

palaniswami, S. and Jenicke, L, 1992, A Knowledge-based Simulation System for

Manufacturing Scheduling. International Journal of Operational and Production

Management, V 01.12 No. 11, pp. 4-14.

parnaby, J., 1991, Design Effective Organizations. Int. J. Technology Management,

VoL 6, No. 1/2, pp. 15-31.

Peck, A. C., 1989, Knowledge-based Approach to Modelling and Simulation.

Advances in Al & Simulation, Proc. of the SCS Multiconference on Al and
Simulation, 28-31, March, 1989, Tampa, Florida, pp. 224

Priestley, M. B., 1981, Spectral Analysis and Time Series. New York, Academic Press.

Rajamani, D. and Singh, N., 1991, A Simulation Approach to the Design of An

Asscmbiy Line: A Case Study. International Journal of Operational and
Production Management, Vol. 11 No. 6, pp. 66-75.

Raubold, U., Blume, C. and Dillmann, K, 1984, Computer Integrated Manz actuirng
Technology and Systems. Springer-Verlag.

Raubold, U. and Nnaji, B., 1991, The Role Of Manufacturing Models For the
Information Technology Of the Factory Of the 1990s. Journal of Design and
ManL¢acturing, Vol. 1, pp. 67-87.

Rounas, J. and Vrieze, O. J., 1990, Metamodelling and Experimental Design: Case

Study of the Green House Effect. European Journal of Operational Research, 47,

pp. 317-329.

R-10

Reference

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W., 1991, Object-

Oriented Modeling and Design, chapter 2: Modeling As a Design Technique.

Prentice-Hall.

Russell, E. C., 1986, SIMSCRIPT 11.5 Tutorial. 1986 Winter Simulation Conference

Proceedings (Eds. Wilson, J. R., Henriksen, J. O. and Robert, S. D.), Dec. 8-10,

1986, Washington, D. C., USA, pp 75-79.

Ryan, B. F., Joiner, B. L. and Ryan, T. Y., 1985, MINJTAB Handbook. Second Edition,

Boston: PWS-KENT Publishing Company.

Sarkis, and Li, L., 1994, A IDEFO Functional Planning Model in Strategic

Implementation of CIM System. Int. J. Computer Integrated Mant¢acturing, Vol. 7,

No. 2, pp. 100-115.

SAS, 1985, SAS* User's Guide: Stadsdcs. SAS Institute, Cary, NC.

Schriber, T. J., 1986, Introduction to GPSS. 1986 Winter Simulation Conference

Proceedings (Eds. Wilson, J. R., Henriksen, J. O. and Robert, S. D.), Dec. 8-10,

1986, Washington, D. C., USA, pp 75-79.

Shannon, RE., 1992, Introduction To Simulation. Proceeding of the 1992 Winter

Simulation Conference ed. J. J. Swain, D. Goldsman, R. C. Crain and J. R. Wilson.

pp. 65-73.

Shanon, R. E., 1984, Keynote Address Artificial Intelligence and Simulation. 1984

Winter Simualtion Coherence Proceedings (Eds. Sheppard, S., Pooch, U. W. and
pegden, CD.) Nov. 28-30,1984, Dallas, Texas, pp. 3-9.

Skooglnnd, N. S., 1989, Application of an AI Simulation Tool in the Design of a
Manufacturing Process, Advances in Al & Sinudation, Proc. of the SCS

Multiconfarxioe on Al and Simulation, 28-31, March, Tampa, Florida, pp. 109-113.

R-11

Reference

SotTech Inc., 1979, IDEF Architect's Manual: ICAM Definition Method IDEF0.

SPSS-X User's Guide, 1986, McGraw-Hill.

Starbird, S. A., 1990, A Metamodel Specification for a Tomato Processing Plant

Journal of the Operational Research Society (UK), Vol. 41, No. 3, pp. 229-240.

Stair, P. J., 1991, Integration of Simulation and Analytical Submodels for Supporting

Manufacturing Decisions. Int. J. Prod. Res. Vol. 20, No. 9, pp. 1733-1746.

Stefik, M and D. G. Bobrow, 1986, Object-Oriented Programming: Themes and
Variations, The Al Magazine, VoL6 No. 4 Winter 1986, pp. 40-62.

Toni, A. D., Filippini, R. and Forza, C., 1992, Manufacturing Strategy in Global

Markets: An Operations Management Model. Int. J. Operations & Production

Management, Vol. 12, No. 4, pp. 7-18.

Tsai Wen-Hsien, 1992, Performance Measurement For Advanced Manufactuimg

Technology (AMT). The Second Conference on Automation Technology, July,

Taipei, Taiwan. Vol. 4, pp. 13-20.

Venue, 1992, Venue Product Fact Sheets, Venue, 1549 Industrial Road, San Carlos,
CA 94070, USA.

Wallace, R. and Mills, R. L, 1988, Simulation As An Essential Element Of

Manufactuirng Strategy. Proc. 4th Int. Co,. Simulation in Man4acturing,

November, pp. 227-237.

Wang, W., 1989, A Knowledge Based Modelling System for the Design and
Evaluation of Flexible Moru(acturing Facilities. Ph. D Thesis, Loughborough

University of Technology.

R-12

Reference

Widman, L. E., K. A. Loparo and N. R. Nielsen, 1989, Artifical Intelligence,

Simulation, And Modelling, John Wiley & Sons.

Wilson, J. M., 1991, Supplier Credit in the Economic Order Quantity Model.

International Journal of Operational and Production Management, Vol. 11 No. 9,

pp. 64-71.

Wortmann, J. C. (Ed.), 1994, CIM Architectures. Computers In Industry, Vol. 24,

No. 2-3, pp. 109-266.

Wu, B., 1990, Design of Manufacturing System. publisher

Xerox, 1988, Xerox LOOPS Reference Manual. Lyric/Medley Release, Xerox PARC,

July, USA.

Yu, B. and Popplewell, K., 1994, Metamodelling in Manufacturing: A Survey, Int. J.

Prod. Res., Vol. 32, No. 4, pp. 787-796.

Zulch, G. and Grobei, T., 1992, Simulating the Departmental Organization for

Production To Order. `ONE-OF-A-KIND' PRODUCTION: New Approaches,

(Eds. Hirsch, B. H. and Thoben, K. -D.) Elsevier Science Publishers B. V., Nother-

Holland.

R-13

appendix I: Object-oriented Programming Techniques

Appendix I

OBJECT-ORIENTED PROGRAMMING TECHNIQUES

This appendix introduces the object-oriented programming paradigm applied in LISP.

The aim is to offer some basic knowledge of object-oriented programming to those

readers, who are willing to know more about the LOOPS environment and are

interested to use this technique.

Ll Object-Oriented Programming

Object oriented programming has been used to mean different things, but there is one

thing in common, that is object. An object is defined as a symbol associated with a

unique database of properties and operations which represent the object (Stefik and

Bobrow, 1986). In programming, an object is defined by its attributes which are called

instance variables. If several objects share the same attributes, these attributes can be

defined as a class variable. Objects communicate with each other by the passing of

messages, which carry the specification of an operation an object is required to

perform and will responded to. To react to the received message the object uses its

own procedures called methods for performing operations. Hence, message sending is

the key that triggers all of the actions in object-oriented programming.

Message sending also supports an important principle in programming: data

abstraction (Stefik and Bobrow, 1986). This principle is that calling programs should

I-I

appendix I: Object-oriented Programming Techniques

not make assumptions about the implementation and internal representations of data

types. This means that message specifies only which operation should be performed,

not how the operation should be performed. From the principle, one of advantages of

object oriented programming can be seen is that changing the underlying

implementation is possible without changing the calling programs. This expresses

strong localisation of information in closed modules is strictly adhered to (Lai and

Peart, 1989) (Skooglund, 1989). Other data structures, functions, procedures are

private and can only be used from within an object (Kreutzer, 1986).

Another feature of object-oriented programming is specialisation. Because objects are

organised into hierarchical classes in which subclasses inherit properties and message

patterns from their super class, it enables the easy creation of objects that are almost

like other objects with specialisation, or say, with adding in a few changes. Inheritance

permits the representation of knowledge in a way which minimises redundancy and

simplifies data updating and modification easily.

It is the abstraction capability that complicated models in object-oriented paradigms

can be built rapidly and reliably (Hofmann et al., 1989). This provides enough

flexibility so that the user can specify the behaviour of individual instances (Peck,

1989) (Begg and Worsley, 1989). Therefore, it is attractive for most researchers to use

it as a vehicle for constructing simulation models of real world systems.

L2 Object Oriented Programming in LOOPS

I-2

appendix I: Object-oriented Programming Techniques

LOOPS, stands for Lisp Object Oriented Programming System, integrates four

programming paradigms: procedure-oriented programming, object-oriented

programming, access-oriented programming and rule-oriented programming. The

integration has two major themes in LOOPS: first is to allow the different paradigms to

be used together in building a knowledge system; and second is the integration of a

programming environment for creating and debugging a knowledge system In the first

integration, either the rule or the ruleset is the object. Methods kept in classes can be

either lisp function or rulesets. The procedures in active values can be lisp functions,

rulesets or can call on methods. In the second integration in LOOPS, this has led to the

same synergy that is exploited in using multiple paradigms for application programs.

The following is an example which shows the specification of the object Monitor in the

LOOPS environment.

[Monitor

((Meta Classes AbstractClass

Edited (*; " Edited 29-Feb-89 by P. Chang)

doc (** This sample class illustrates the syntax of classes in Loops)

(Supers Simulation-Object)

(Classes Variables)

(specificItems ((Attach AttachToObject doc "Attach self to an object")

(Detach Detach doc "Detach self from the object")

(Reattach Reattach doc "Reattach self to the object"))

(image SetBitmap doc "a bit map used to represent self on a map"))

(Instance Variables

I-3

appendix I: Object-oriented Programming Techniques

(reattach? NIL doc "r if self should be reattached when the display

window is opened")

(attachee NIL doc "an list of objects we are attached to")

(timeOn NIL doc "the time relative to now when self will switch on")

(dnxOff NIL doc "the time relative to the timeOn if self is off or

relative to now if self is on when self will switch"))

(Methods

MONTTOR. AttachToObject MONITOR. Detach MONITOR. Reattach

MONTTOR. SwitchOn MONITOR. SwitchOff MONPTOR. ChangeName

MONTTOR. Reset MONTTOR. Remove)]

Every member of the class may have a different value for an instance variable, such as

the location instance variable. However each instance of the class has the same class

variable, like image in the class variable.

In any traditional programming language, procedural code operating over data

structures is applied. For example, in modelling the behaviour of monitor, a set of

procedures would be defined which would operate over some data structure (a state

vector) which represents a particular monitor.

In an object oriented system, the set of procedures applicable to a particular state

vector are associated with that state vector. The conventional call and return function

protocol is replaced by a slightly different "message send and return" protocol. Here a

message is sent to an object consisting of a selector identifying what the user wants to

I. 4

appendix I: Object-oriented Programming Techniques

take place and message arguments. Thus, in LOOPS the behaviour of a monitor would

be defined separately for each type of monitor and it would be involved in sending a

message to the relevant objects from where the value of the variables to be monitored

can be obtained. In LOOPS code, this would be:

(- monitor Switch).

Thus an immediate advantage of object oriented programming is the reduction in the

number of decision points present in the code. In an object oriented system, code is

located in a manner that clearly associates it with the data structure over which the

code is intended to operate (Lal and Peart, 1989). The functional system does not need

to be changed when new types of monitor are introduced or when the data

representations are altered. This makes the system much easier to modify and thus

supports a prntotyping approach to software development.

The behaviour of objects are specified by the functions that are invoked as a result of

the message sent. Objects of different types may use different functions in response to

the same message. For example

(- monitor Switch).

could call on of following:

SingleAttribute. Switch

MultiAttribute. Switch

depending on whether the monitor is a single attribute or a multi attribute monitor.

I-5

appendix I: Object-oriented Programming Techniques

Objects of the same type will always use the same function in response to the same

selector but they may have different data over which the function operates. For

example, two single attribute monitors could have different attributes to attach so (-

monitor Switch) could result in one string output and another in numerical data output.

Although the data values on different objects of similar type may vary, the actual data

structure needs to be identical otherwise the functions applicable to that type of object

might attempt to access non-existent data.

I-6

Appendix 11: Metamodelling Program

Appendix II

The Metamodelling Program

The hybrid modelling program consist of a suite 7 pieces of source code, of which two

examples are GENERATOR. SRC and COLLECTOR. SRC enclosed in this Appendix.

GENERATOR. SRC is used for construction of a metamodel, and COLLECTOR. SRC

is used for collecting user specified simulation results.

No matter what function a collector or a zoom node performs, each of them has been

treated as an object in the LOOPS and LISP environment. Therefore, each of them is a

Class. Within the GENERATOR. SRC source code, under CLASSES is

MetamodelGenerator. Each object respond to the message its received by using a

methods, which is equivalent to the procedure in traditional programming. All the

methods are possessed by an object is listed under the METHODS in the first part of the

description of the object. In GENERATOR, it has ChooseData, Formulation,

Validating and so on.

Each object also have variables to store data. The variables shared between different

instances are defined as ClassVariables, such as specificItems on the GENERATOR

object. The values used locally and used to explicit instances are defined as

InstanceVariables, for example bm (icon bitmap).

II-1

Appendix II : Metamodelling Program

To collect simulation data, an independent variable menu appears on the screen. This is

caused by calling COLLECTOR. ChooseVarMenu. Similar to COLLECTOR, once a

user select "Formulate metamodel" from the GENERATOR object menu,

GENERATOR class responds to this by operating GENERATOR. Formulation. A

method can be a primitive method or can invoke another method within. For instance,

in METHOD GENERATOR. ChooseData, where a part of code likes:

(MENU (- self GetChooseDataMenu))

(_ self GetChooseDataMenu) shows another method, named GetChooseDataMenuand

and stores this information on the object itself (self), is called. When the primitive

method is reached, the actual activities starts.

This structure is utilised for each of the pieces of code, and the following examples

illustrate the object classes for the work.

11-2

(DZFXWE-FILE-INFO READTABLE "XCL° PACKAGE "INTERLISP")
(FILECREATED 016-Nov-94 15: 39: 570 IIDSKI<home>jelly>hmsm>binq>tem>metacode>GENERATOR. SRC; llI

29109

fchangeal Ito: I (METHODS IMetamodelGenerator. GetTypeMethodInfo)
IMetamodelGenerator. Validatingl)

(FNS IMetamodelGenerator. GetTypeMethodlnfol)
(CLASSES IMetamodelGeneratorI)
(VARS GENERATORCOMS)

jprevioual Idate: l " 2-Nov-94 16: 43: 42"
((DSK)<boese>jelly>hmsm>bing>tem>metacode>latestcode>GENERATOR. SRC; 21)

(pRETTYCOMPRINT GENERATORCOMS)

(RP-Q0 GENERATORCOMS
((CLASSES IMetamodelGeneratorl)

(METHODS IMetamodelGenerator. ChooseDatal IMetamode1Generator. ClearLogInformationl
IMetamodelGenerator. CloseLogl IMetamodelGenerator. ConditionalFormul
IMetamodelGenerator. CreateMatrixl IMetamodelGenerator. DSPANOVAI
IMetamodelGenerator. DeleteLogl IMetamodelGenerator. DescribeCurrentLogl
IMetamodelGenerator. EntryDatal IMetamode1Generator. Formulation)
IMetamode1Generator. Validatingl IMetamodelGenerator. Formull
IMetamodelGenerator. GetChooseDataMenui IMetamodelGenerator. GetFromLogl
IMetamodelGenerator. GetTypeMethodlnfol IMetamodelGenerator. GetTypeOfDatal
IMetamodelGenerator. ObtainDataI IMetamodelGenerator. OpenLogI
IMetamodelGenerator. ReadBriefDescriptionI IMetamodelGenerator. ReadDatalnMatrixi
IMetamodelGenerator. RestoreFileDatal IMetamodelGenerator. SelectLogl)))

(o PCLASSES IMetamodelGeneratorl)
(DBFCL&SS IMetamodelGeneratorl

(IMetaC'assl IClassl IEdited: i (* \; "Edited 14-Nov-94 10: 31 by binq")

(ISupersI INodeGraphicl SIMULATION-OBJECT)
(IC1assVariablesl (Ispecificltemal #, ($A (("Describe current data file" IDescribeCurrentLogl

sprints the brief description associated with the current log" NIL NIL IHacLog) ("Select file"
s. 1 Logl "Lets you choose from the log indices which log you want to analyse" NIL IHasLogl

IuasLogl)) ("Change file" ISelectLog) "Lets you change the log you want to analyse" NIL NIL
pasLogI) ("Formulate metamodel" IFormull "Prints a summary of the logged information" NIL NIL
Ha. L)gI) ("Validate the metamodel" IValidatingl "Validate the metamodel which is latest

gsneirsted" NIL NIL IHasLogl) ("Delete file" IDeleteLog "Deletes the current log permanently from
disc" NIL NIL IHasLogl)) IUnionSuperValuel NIL)

Idoel "the specific items for this class")
(I typesummaryMethodai (((SMALLP FIXP FLOATP SIGNUM)

\\PrintNumericVarSummaryI
(("Construct metamodel (whole)" 'IFormulationl

"help string for construct metamodel"
(SUBITEMS ("Construct metamodel (part)"

'IConditionalFormul)))
("Transfermation" 'ITrans f11 "help string for construct

wat el"
(SUBITEMS ("Expotential" 'IPotientialTranfI)

("Square" 'ISquareTranfI)
("1/Y" 'ITransfll)))

("Display ANOVA" 'DSPANOVA
"Plots number of times each value taken on ignoriinq

time")))
((LITATOM STRINGP CHARACTER)

1\\PrintHistSummaryl 1\\P1otHistlVDatal))
Idocl "1st used to identify the method which will be used to print the summary

of the particular type of stored data - all methods are passed the stream for printing and the
varData of the form (<varName> . stream) - also holds plotting methods appropriate for varData"

(IlnstanceVariablesl (IbriefDescriptionl NIL IDontSavei IAnyl Idocl
"current log's brief description string")

(lindexFile) NIL Idocl "the file which is used as the index for the current log")
(Ilogl NIL IDontSave! lAnyl Idocl

"log index of the file streams containing the logged information")
(Imatrixl NIL Idocl

"the matrix that has been used or is going to be used for metamodel
construction. ")

(Iwindowl NIL Idocl "edit and display window")
(IpredThresholdl 90 Isampletl 10 Idocl "threshold is percentage of elements in data

that will lead to data being treated as matching the predicate type sample9 is the sample size
used to establish) the percentage"

(linage-bail ANALYSER-B!! Idocl "bit sup used to represent self on a map")))

7eý

(I flatchNethodDefaI)
ultH IMetamodelGeneratorl IChooseDatal NIL

"Lot the user choose the data that he wants to do something with and reture that data. " (Icategoryl (IMetamodelGeneratorl)))

(1ETH INetamodelGeneratorI IClearLogInformationI NIL
"clear the log information from self" (Icategoryl (IMetamodelGeneratorl)))

(NETH IMetalaodelGeneratorl ICloseLogl NIL
"Close the log file if they are open. " (IcategoryI (IMetamodelGeneratorI)))

(Iry ($etamodelGeneratorl IConditlonalFor l NIL
construct metamodel with user selected independent variables" (Icategoryl

IN. tamodelGeneratorI
)11

(}ETH INetamodelGeneratorl ICreateMatrixl (Idatal)
'Create a matrix, and then put data into it. " (Icategoryl (IMetamodelGeneratorl)))

(METH (MetamodelGeneratorl DSPANOVA NIL
"display the results of Analysis of Variance" (Icategoryl (IMetamodelGeneratorl)))

(NETS IMetamodelGeneratorl IDeleteLogi NIL
"Delete the current log completely! " (icategoryl (IMetamodelGeneratorl)))

(KZTH IMetamodelGeneratorl IDescribeCurrentLogi NIL
=prints out the brief description of the current data file if any" (Icategoryl

IN etamodelGeneratorl

(NTH IMetamodelGeneratorl lEntryDatal (Idatal)
Opro, pt metamodel editing menu here or not? (considering)" (Icategoryl

(Is. t= =elGenerator))))

(NTH INietamodelGeneratorl IFormulationl NIL
"To construct metamodel from the file. " (Icategoryl (IMetamodelGeneratorl)))

()TB INetamodelGeneratorl IValidatingl NIL
"Validate metamodel with Double-Cross methods" (Icategoryl (IMetamodelGeneratorl)))

pBTB IPetamodelGeneratorI IFormalI (IIVDataI)
 metamodel construction and display selection. " (Icategoryl (IMetamodelGeneratorl)))

(MST,,)MetamodelGeneratorl IGetChooseDataMenul NIL
*"turn a menu which will return a varData appropriate part of the log struture under user

selection" (IcategoryI (I MetamodelGeneratorI)))

(mcTH IMetamodelGeneratorI IGetFromLogI (IkeysI)
uReturn the fileStream containing the data stored under keys in the log (if any)N

(Ieategoryl

Iy. tanwd. 1Generatorl

(pTJ 1! letaaode1GeneratorI IGetTypeNothodInfo1 (1varDataI)
"Method documentation" (Icategoryl (IMetamod. 1Generatorl)))

(PTg I! l tasodalGenarator) IGetTyp. OfDatal (lvarDataf)
"Mathod documentation" (Icat. goryl (INet4mod. 1Genaratorl)))

3

(METH IMetamodelGeneratorI lObtainDatal (IvarDatal)
"Read out data from saved file. " (Icategoryl (IMetamodelGeneratorl)))

(NETH II4etamodelGeneratorl IopenLogI NIL
 Open the log file" (Icategoryl (IMetamodelGeneratorl)))

(METH 114etamodelGeneratorl IReadBriefDescriptionl (IlogIndexFilel)
"Read and return the brief description found on the logIndexFile" (Icategoryl

(ystamodelGeneratorl

(METH IMetamodelGeneratorl IReadDatalnMatrixl (Idatal Itags? I)
To allocate data to each element of the matrix. " (Icategoryl (IMetamodelGeneratorl)))

(MOTH IMetamodelGeneratorl IRestoreFileDatal (Ifilel)
"Make the loq index on self consistent with the stored information on file" (Icategoryl

IKetamodelGeneratorI

(METH IMetamodelGeneratorl ISelectLogl NIL
"Let user to choose a new logger to work on" (Icategoryl (IMetamodelGeneratori)))

(IN. thodl ((IMetamodelGeneratorl IChooseDatal) Iself I)
choose the data that he wants to do something with and reture that data. "

(Ede
u

(e
ri

sool li
Ithenl (MENU (_ IselfI IGetChooseDataMenul))

(elsel (_ (self I IPrintMessage) "No items present in collecter. ")

(IFlethod) ((IMetamodelGeneratorl IC1earLogInformationl) Iself I)
 clear the log information from self"
(Iselfl ICloseLogI)
_e I: briefDescriptioni NIL)

(1I: indexFilel NIL)
(! I: log I NIL)
(IzelfI IChangeStatel NIL NIL)

$$)

((Methodi ((IM i e1Generator) ICloseLogl) Iselfl) "Close the log file if they are open. "

Ithenl (IOPerateOnLogFilesl (E I: logl)
(FUNCTION (LAMBDA (Ifilel)

(lift (AND (STREAM? Ifilel)
(OPENP Ifilel))

Ithenl (CLOSEF Ifilel)

T))
lelsel Ifilel)))

e f: loq:, chooseMenui NIL)
!j

(($ethodl ((IMetamodelGeneratorl IConditionalFormul) self I)
"construct metamodel with user selected independent variables"
(12T ((IfileAndstreaml (CAR (8 1: 1og1)))

(lindependentVarsl (CAAR (E I: logl))))
(IifItheniileAndStreaml

(* ýý "process the data")
(LET ((Idatal (Iselfl IObtainDatal Ifilekndstreaml)))

Iifl Tdatal
Ithenl (Iselfl ICreateMatrixl Idatal)

IelseifI I: matrixl) Itheni (Iselfl IPrintMessagel "Using same data file")))
11f1 (AND (E I: mätrixi)

(NULL (e I: windowl)))
IthenI

(* I::
`data has been read in. In sequence, to create metamodel edit window

instance. ")

4

(LET ((IMetamodelEDWindowº (_ (S IMetamodelWindowl)
ºNewI)))

(SETA \v (_ (@ I: drawingl)
IPromptForWordI
"How many independent variables are you interested?

a)) (-@ IMetamodelEDWindowl IcolNumListl NIL)
(Iforl \i Ifroml 1 Itol \v

Idol (_@ IMetamodelEDWindowl IcolNumListl
(ATTACH ((@ I: drawingl)

_ IPromptForWordI
(CONCAT

"Input column number of
the w \i " independent

variable:
(@ IMetamodelEDWindowI

(colNumListl)))) (_@ I: windowl IMetamodelEDWindowº)
(_@ IMetamodelEDWindowi ItoGeneratorl Iselfl)
(_@ IMetamodelEDWindowl IdataTabl (@ I: matrixl))

IMetamodelEDWindowI ISetVariableNameI IindependentVarsI)
IMetamodelEDWindowl IStartl T))

lelseifº (I I: matrixl)
Ithenl

"metamodel edit window is existing, so pass the new data to the
instance")

(LET ((IMetamodelEDWindowº (@ I: windowI)))
(SETA \v (_ (@ I: drawingl)

IPromptForWordº
"How many independent variables are you interested?

a)) (_@ IMetamodelEDWindowl IcolNumListl NIL)
Iforl \i Ifroml 1 Itol \v

Idol (_@ IMetamodelEDWindowl IcolNumListl
(ATTACH (_ (@ I: drawingl)

IPromptForWordº
(CONCAT

"Input column number of
tha \i " independent

variable: "
1)

(@ IMetamodelEDWindowI

(co13jnmListl)))) (_ IMetamodelEDWindowl IOpenWindowl)
(_@ IMetamodelEDWindowl IdataTabl (@ I: matrixl))
(IMetamodelEDWindowº ISetVariableNameI IindependentVarsI)

IMetamodelEDWindowl IStartº T)))
lelsel (* \; "do nothing")

(Iselfl IPrintMessagel "Unable to formulate metamodel"))
_ NIL))

(, Method, ((IMetamodelGeneratorl ICreateMatrixl) Iselfl Idatal)
. Create a matrix, and then put data into it. "

lift
Ithenl (LET ((IindependentVarsl (CHAR (@ I: logl)))

(Irowsl (LENGTH Idatal))
Icolumsl Imatrixl Itags? I)

IifI (LISTP IindependentVarsl)
Itheni

(t I;; i
"create a matrix where independent variable is more than one")

Iifl (OR (EQ (LENGTH (CAR Idatal))
5)

(EQ (LENGTH (CAR Idatal))
6))

Ithenl (* \;
"there are two tags on the transition

ampa1 (SETA Icolumal (IPLUS (LENGTH IindependentVaraI)
1))

(SETA (tags? I NIL)
IelseifI (OR (EQ (LENGTH (CAR Idatal))

5

7)
(EQ (LENGTH (CAR Idatal))

8))
Ithen I (* \;

"there are three tags on the transition
leap)

Ieisel

(SETA Icolumsl (IDIFFERENCE (LENGTH (CAR Idatal))
1))

(SETA Itags? I T))

(* I;; i "independent varible is NIP only")

lift (EQ (LENGTH (CAR Idatal))
4)

Ithenl (SETA Icolums) 2)
(SETA Itags? I NIL)

lelseifi (EQ (LENGTH (CAR Idatal))
6)

Ithenl (SETA Icolumsl 5)
(SETA Itags? I T)))

(@I: matrixl (Itablel Irowsl Icolumsl 'FLOATP 0))
(Iselfl IReadDatalnMatrixl Idatal (tags? I))

(elseifl (e I: matrixl)
)then) (_ Iselfl IPrintMessagel "Using previous data. ")

lelsel (ERROR "There has no data to build metamodel. ")))

((. thOdl ((IMetamodelGeneratorl DSPANOVA) Iselfl) "display the results of Analysis of Variance"
(r

(((Iinstancel

t(netbodl ((IMetamodelGeneratorl IDeleteLogl) self I) "Delete the current log completely! "
lift (MOUSECONFIIRMI"About to delete all the current data file permanently! " NIL

I: drawing! IGetPromptWindowl))
(then) (RESETLST

(RESETSAVE (CURSOR WAITINGCURSOR))
(IselfI ICloseLogl)
(TOperateOnLogFiles) (@ I: logI)

'DELFILE
(DELFILE (E I: indexpilel))
(Iselfl IClearLoglnformationl)
(_ Iselfl IChangeStatel NIL NIL)))))

(I thodl ((IMetamodelGeneratorl IDescribeCurrentLogl) (self I)
sprints out the brief description of the current data file if any"
(IifI (8 I: briefDescriptionl)

Ithenl (Iselfl IPrintMessagel (8 I: briefDescriptionl))
Ie111e1 iselfI IPrintMessagel "No brief description available")))

(Isethodl ((IMetamodelGeneratorl IEntryDatal) Iselfl Idatal)
. 'prowpt metamodel editing menu here or not? (considering)"
(L, gT* ((CADDR fII

(
(LISTPI Iselectorsi)ul

Idatal)))

Ithenl (MENU (Icreatel MENU
ITEMS IselectorsI
TITLE - "Metamodel Edit Menu"))

lelsel Iselectorsl)))
(Iifithenlele(CL:

BREAK)

lelsel (* \;
"Let user know we can't do anything")

Iselfl IPrintMessagel "Unable to plot information")
NfL)))

(Inetbed fileJsta
oriel e(CARt(rlllioormu'ationl) Iselfl) "To construct mstamodel from the file. "

(lindependentVaral (C. AR (E I: logl))))
(lift IfileAndStreaml

Ithenl (* \: "process the data")
(LET ((ldatal (iselfl IObtainDatal IfileAndStreaml)))

(lselfl TCreateMatrixl Idatal))
lifT (AND (E I: matrixl)

Itheni
(NULL (E I: windowl)))

(* I:: I
"data has been read in. In sequence, to create metamodel edit window

instafco -
")

6

(LET ((IMetamodelEDWindowl (_ ($ IMetamodelWindowl)
INewI)))

(_8 I: windowl IMetamodelEDWindowl)
(2 IMetamodelEDWindowl ItoGeneratorl IselfI)
(-# IMetamodelEDWindowl IdataTab) (8 I: matrixl))
(_ IMetamodelEDWindowI ISetVariableNameI IindependentVarsI)

IMetamodelEDWindowl IStartl NIL))
IelseifI (F I: matrixl)

Ithenl

(* I;; I
"metamodel edit window is existing, so pass the new data to the

instance")
(LET ((IMetamodelEDWindowl (8 I: windowl)))

(_ IMetamodelEDWindowl IOpenWindowl)
(_E IMetamodelEDWindow) IdataTabl (8 I: matrixl))
(IMetamodelEDWindowl ISetVarlableNamel IlndependentVarsl)
(_ IMetamodelEDWindowl IStartI NIL)))

lelsel (* \; "do nothing")
(_ Iselfl IPrintMessagel "Unable to formulate metamodel"))

NIL))

(IMethodl ((IMetamodelGeneratorl IValidatingl) Iself 1)
«Validate metamodel with Double-Cross methods"
(lift (8 I: windowl)

Ithenl (_ (e I: windowl)
IValidatingl)

lelsel (_ (2 I: drawingl)
IPrintMessagel "Construct metamodel first. ")))

, jj. r-rhndi ((I! letamodelGeneratorl IFormull) Iselfl IIVDatal)
wmetamodel construction and display selection. "
(LET* ((laelectorst (CADDR (_ Iselfl IGetTypeMethodlnfol IIVDatal)))

(Iselectorl (Iifl (LISTP Iselectoral)
Itheni (MENU (Icreatel MENU

ITEMS Iselectoral
TITLE

_
"Select options"))

lelsel Iselectoral)))
11fI (selector)

Itheni (1 IselfI Iselectorl IIVDatal)
(elsel (_ Tselfl IPrlntMessagel "Unable to plot information" NIL))))

(IMethodl ((IMetamodelGeneratorl IGetChooseDataMenul) self I)
. Return a menu which will return a varData appropriate part of the log struture under user

seifCtionu (ItYPe? I MENU (e I: loq:; chooseMenul)) IM
Ithenl (! I: log:; chooseMenul)

lelsel (2I: log:; chooseMenul)
(I\\Ma]EeChooseDataMenul (8 I: logI))))

(I! lethod) ((IMetamodelGeneratorl IGetFromLogl) Iselfl Ikeysl)
'Return the fileStream containing the data stored under keys in the log (if any)"
(IGetMultiAssocl Ikeysl (! I: logl)))

(INethodl ((IMetamodelGeneratorl IGetTyp&4ethodlnfol) IselfI IvarDatal) "Method documentation"
(Ibindl (Itypesl (_ Ise1fl IGetTypeOfDatal IvarDatal)) Ifindl lentryl

uni (B I:: typeSummaryMethodsl) Isuchthatl ($forl Itypel linsidel Itypeal
la)))ys) (FMEMB Itypei (CAR lentryl))

(, Method) ((IMetamodelGenerator) IGetTypeOfDatai) Iselfl IvarDatal) "Method documentation"
(LET ((Ia+mPle#I (E I: predThreshold:, sample#I))

(Idone#I 0)
hypes))

lift (IListLonger? l Itypesl 1)
Ithen$ Itypeal

lelsel (CAR (typed))))

(INethodl ((IMetamodelGeneratorl IObtainDatal) IselfI IvarDatal) "Read out data from saved file. "
(PROG (IdataToDealI)

(SETQ IdataToDeall (K RP-META-DATA (CDR IvarDatal)))
(RETURN IdataToDealI)))

t1Methodl ((IMetamodelGeneratorl IOpenLogl) self I) "Open the loq file"
(lift (! I: logl)

Ithenl (IMPeli(FUUNCTIOONl(LRmBDDA I(Ifii.
))

Iifl (STREA P Ifilel)
Ithenl Ifilel

7

T)))
lelael (OPENSTREAM Ifilel 'INPUT 'OLD))))

(INethodl ((IMetamodelGeneratorl IReadBriefDescriptionl) Iselfl IloglndexFilel)
"Read and return the brief description found on the logIndexFile"
(LET ((IfileStreaml (OR (OPENP IloglndexFilel)

(OPENSTREAM IloglndexFile'INPUTI 'OLD))))
(PROG1 (READ IfileStreaml STEM-RDTBL)

(CLOSEF IfileStreaml))))

()Methodl ((IMetamodelGeneratorl IReadDatalnMatrixl) Iselfl Idatal Itags? I)
"To allocate data to each element of the matrix. "
(LET* ((Imatrixl (2 I: matrixi))

(Irowsl (ARRAYSIZE (matrix)))
(Icolums) (ARRAYSIZE (ELT Imatrixl 1))))

lift (NULL (tags? I)
Ithenl (Iforl \i Ifroml 1 Itol Irowsl

idol (LET* ((IvalueGroupl (CAR (NTH Idatal \i)))
(IdepValuel (CAR (LAST IvalueGroupl))))

(SETH Imatrixl \i 0 IdepValuel)
Iforl \j Ifroml 1 Itol (IDIFFERENCE Icolumal 1

Idol (SETA IindValuel (CAR (NTH IvalueGroupl
(IPLUS \j 1))))

(SETH Imatrixi \i \j lindValuel))))
lelsel (Iforl \i Ifroml 1 Itol Irowsl

Idol (LET* ((IvalueGroupl (CAR (NTH Idatal \i)))
(IdepValuel (CAR (LAST IvalueGroupl))))

(SETH Imatrixi \i 0 IdepValuel)
Iforl \j Ifroml 1 Itol (IDIFFERENCE Icolumsl 1)

Idol (SETA IindValuel (CAR (NTH IvalueGroupl
(IPLUS \j 1))))

(SETH Imatrix) \i \j IindValuel)))))

((I: matrixl Imatrixi)))

(1$ethodl ((IMetamodelGeneratorl IRestoreFileDatal) Iselfl Ifilel)
Make the log index on self consistent with the stored information on file"

(Iselfl ICloseLogl)
('LET ((Istreaml (OPENSTREAM Ifilel 'INPUT 'OLD)))

(* 1;;; I Remember the index file")

(e I: indexFilel Ifilel)

(* l;;; l "read in the description")

(eI: briefDescriptionf (READ Istreaml STEM-RDTBL))

(e I;;;) "Read in the log")

(eI: logI (READ Istreaml STEM-RDTBL))

(+ I;;;) "close the stream")

(CLOSEF Istreaml)

(* 1;;; 1 "Open the log")

(I self lI 0penLo71)

(* Iýý; l "Inform User")

Iselfl IPrintMessagel (CONCAT "Metamodel generator now contains data from collecter
file "

Ifilel)
T T)

T))

(IM*thodl ((I tamodelGeneratorl ISelectLogl) I'elfI)
"Let user to choose a new logger to work on"
(LET* ((IlogIndexFilesl (DIRECTORY (PACXFILENAME "NAME (I I: controller: thisIDI)

'EXTENSION
'IDEN-META-INDEX)))

(Imenultemal (AND IlogIndexFilesl (NCONCI (Iforl Ifilei (inl IlogIndexFileal
Icollectl (LIST (PACKFILENAME 'HOST NIL

'DIRECTORY NIL
'BODY Ifilel)

. jRestoreFileDataI
(LIST

Ifilel)

8

NIL))
"("* None *" IClearLoglnformationl

"Clears the collecter information from

self')))))
lift Imenultemsl

Ithenl (STATE-MENU (_ Iselfl $CreateStateMenu) Imenultemal "Select saved data file")

lelsel (_ IselfI IPrintMessagel "No metamodel data files found on the disc")
NIL)))

\LDnbatchMethodDefaI)
L E\: DONTCOPY

(FXIEMAP (NIL)))

STOP

(DEFINE-FILE-INFO READTABLE "XCL" PACKAGE "INTERLISP")
(FILECREATED "17-Feb-95 11: 24: 43" I(DSK}<home>je11y>hmsm>bing>tem>metacode>COLLECTER. SRC; 32I

99243

(changes) Ito: [(METHODS ICollecter. SwitchOnl)
(CLASSES ICollecterº)

Ipreviouai Idate: I "17-Feb-95 10: 48: 27"

){DSK)<home>je11y>hmam>binq>tem>metacode>COLLECTER. SRC; 311)

; copyright (c) 1994,1995 by B. YU. All rights reserved.

(pRETTYCOMPRINT COLLECTERCOMS)

(RpAQQ COLLECTERCOMS
((CLASSES ICollecterl)

(METHODS ICollecter. AttachIdemNodel ºCollecter. AttachPartialZoomNodeI
ICollecter. AttachZoomNodel ICollecter. ChooseAnObjl ICollecter. ChooseAnVariablel
ICollecter. ChooseMultiPairPathl ICollecter. ChoosePairOfPathl

ICollector. ChooseVarMenuI
(Collecter. ChooseVariableaº ICollecter. ConvertTypeToNumberl ICollecter. DSPWIPHistº
ICollecter. DettachAllVariablesl ICollecter. DettachVariablel

ICollecter. EventChangedl
ºCollecter. ExpungeDatal ICollecter. GetMetaDeacriptionl
ºCollecter. GetMetaIndexFileNamel ºCollecter. GetQLength) ICollecter. GetQLength2l
ºCollecter. GetWIPDatal (Collecter. InitialLogl ICollecter. PickPathl
Collecter. PickPathal ICollecter. ProceasDataº ICollecter. ProcessEventl

ºCollecter. PutToLogl ºCollecter. ReSetl ICollecter. Recordl ICollecter. RestDatal
ºCollecter. SPlndicationl ICollecter. SSlndicationl ICollecter. SState? I
ºCollecter. SaveDatal ICollecter. SaveDatalfwantedl ICollecter. Startº
Collecter. StoreValuel ICollecter. SwitchOffI ICollecter. SwitchOnº
Collecter. TakeRecordl (Collector. \\GetFileStreaml ICollecter. \\GetLogFileNamel)

(FNS ICollecter. GetQLengtº)))

ýDEFCLASSES ICollecterl)

(D L SS ICollecterl
(IMetaC'assl (Class) IEdited: I (* \; "Edited 17-Feb-95 10: 39 by enby")

(ISupersI MULTIPLE-ATTRIBUTE-MONITOR)
(IClassVariables1 (IspecificItemsl #, ($A (("Switch On" ISwitchOnl "Will switch this monitor

on' (SUBITENS ("Set time to switch on" ISetOnTimel "Allows you to enter a time when this monitor

will automatically switch on" NIL (ITimeOnSet? l T) (ITimeOnSet? 1 NIL)) ("Change time to switch

on ISetOnTimel "Allows you to alter the time when this monitor will automatically switch on" NIL

II: (ITimeOnSet? I T)) ("Set time to switch off" ISetOffTimel "Allows you to enter a time when
this monitor will automatically switch off" NIL (ITimeOffSet? I T) (ITimeOffSet? l NIL)) ("Change

tim, to switch off" ISetOffTime) "Allows you to alter the time when this monitor will

automatically switch off NIL NIL (ITimeOffSet? I T))) O\n 10ffI) ("Switch Off" ISwitchOffI "Will

switch
time when

ithisnmonitor
will

8automatically iswitch soff" hNILf(ITimeOffSet?
I T)) (ITimeOffSet? I

enter

("Change time to switch off" ISetOffTime) "Allows you to alter the time when this monitor will
automatically switch off" NIL NIL (ITimeOffSet? i T))) (OffI 0\n) ("Choose Path (pair)"
ICboosepairOfPath) "Choose a pair of path amongst which those processes are of intested to
investigate, then attach the collector to those zoom nodes. " (SUBITEMS ("Choose Several Pairs of
path" (ChooseMultiPairPath) "Attach the collecter to a selected variable")) 10ffI O\n) ("Dettach

nuuýr"of queue
IDettachVariablel the

occurs. "r(Sto
those

UBITEMS ("Dettach
which the

(DettaeMllVariablesl "Attach the collecter to a selected variable")) IOffI 0\n) ("Choose Ind.
Variable IChooseIndVariablel Choose an independent variable of which is interested to generate
metal for this run. " (SUBITEMS ("Choose Ind. Variables" IChooseMultllndVariableal "Attach the

collector to a selected variable")) 1Off1 O\n) ("Steady-State Indication" ISSlndicationl
. Indicate user whether the system has reached steady-state, so that collected data can be adopt
to generate metamodel" (SUBITEMS ("Steady-State Indication(several periods)" ISPlndicationl

reached steady-state, so that collected data can be adopt . Indicate di ate usertwhether
r))

h
l0sy

system
n))

has
NIL NIL)

(IInstanceVariables) (IIndVar
"Remember

I0 IIdoclwhich
independent variable(s) are going to be monitor")

(InumberofQl 0 Idocl "Number of queue on attached page")
(Irecordl(NIL)

"Association list in which record flow input time with associated number in queue of the

pago. "

(IflowListl NIL Idocl "List of flows when it occurs the number in queue will be

recorded. ")
(IboxListl NIL Idocl "List of boxes where the process time will be recorded down. ")
(ItypeListl NIL Idocl "Association list of product type - corresponding number")
(IlogI NIL Idocl

"nested ALst used to store appropriate stream pointers or filenames as

2

required") (IalreadyReset? I NIL Idoci Iflagi lusedi Itol Ipreventl IselfI Ifroml Iresetingl Imorel Ithanl loncel Iasi \a Iresultl lofI lactivityl)
(I image-bmI STAGE-BM)))

(i\\BatchMethodDefs1)
(HETH Icollecterl IAttachldemNodel NIL

"attach self to all IDEMBOX of an IDEFO new page. " (Icategoryl (MONITOR)))

(METH ICollecterl IAttachPartialZoomNodel NIL

wpromt for user to pick up nodes of which the process are of interest, then to ask for select
paths" (IcategoryI (ICollecterI)))

(sETH ICollecterl IAttachZoomNodel NIL
"attach self to all zoom nodes of a transition map. " (Icategoryl (ICollecterl)))

(SETH ICollecterl IChooseAnObjl NIL
"select an object which can be either a path or a node" (Icategoryl (ICollecterl)))

(SETH ICollecterl IChooseAnVariablel NIL
"select a variable, which can be a input flow or a process time, to record the number in

queue when it occurs. "
(Icategoryl (ICollecteri)))

(METH IcollecterlI
hooseHultiPairPathl

NIL
"To choose more pair of path. (Icategoryl (ICollecterl)))

(. TH ICollecterl IChoosePairOfPathl NIL
"To choose one of flow threds, or to select part of processes of the only flow thred. " (Icategoryl (ICollecterl)))

(METH ICollecterl IChooseVarMenul NIL
"prompt a menu for user to choose an independent variable. " (Icategoryl (ICollecterl)))

(METH (Collecterl IChooseVariableal NIL
*Select several variables when the flow occurs, the number of queue is required to record. " (Icategoryl (ICollecterl)))

(METH ICollecterI IConvertTypeToNumberI (IoutputDataListI)
"transfer product type - an atom into a numerical number" (Icategoryl (ICollecterl)))

(METH lCollectorl
the NIPDhistogrami (Icategorylld(ICollecterl)))

(METH ICollecterl IDettachAllVariablesl NIL
"Dettach all variables been selected before. " ((category! (ICollecterl)))

(METH ICollecterl IDettachVariablel NIL
"dettach a variable that user selected already. " (Icategoryl (ICollecter$)))

(METH 1collecterl
changed,

NIL
wif event Yed, true - add hook" (Icategoryl (ICollecterl)))

(METH Idell. ct. rI
of the

puigeDatal NIL
present on the current log. " (Icategoryl (ICollecterl)))

(METH 1CollecterI IGetMetaDescriptionI NIL
"Prostet for description of file to be saved. " (Icategoryl (ICollecterl)))

("BTU (Collecterl IGetMetalndexFileNaerl NIL
"iteturn index file name in which data file name is saved. " (Icategoryl (ICollecterl)))

3

(MOTH ICollecterl IGetQLengthl NIL
"Collect qLength (in term of number of order waiting in the queue to process) through

simulation controller, the number does not include those order being processing. "
(Icategoryl (ICollecterl)))

(METH (Collecteri ICetQLength2l NIL
"Collect number of Working In Process (include those being processing)" (Icategoryl

ICollecterl
)))

(METH ICollecterl IGetWIPDatal (Idatal)
"snap WIP data off" (Icategoryl (ICollecterl)))

(METH ICollecterl IlnitialLog) NIL
"To obtain independent variables from user, and then set logger. " (Icategoryl

(ICollecterl)))

(HETH ICollecterl IPickPathl (IwhichPathl)
"pick a path, which can be either input or output path. " (Icategoryl (ICollecterl)))

(METH ICollecterl IPickPathsl (Iflagl)
"Select several paths, data is required to collect when flow occurs along the paths. "
(Icategoryi (ICollecterl)))

(METH Icollectel IPr cessDatal (I inputlFlowRecordl pinput2FlowRecordl I input 3F lowRecord I
loutpu Ikeyl)

process original data to meet metamodel generator's requirement. " (Icategory)
(pColleaterI)

))

(METH ICollecterl IProcessEventi (levent) ItimeChanged? I)
"sent to self when an event occurs - take account if it is on the attached page. "

(I category

(ICollecterl
)))

(METH ICollecterl PutToLogi (Ikeysl)
"finds appropriate fileStream on log. " (Icategoryl (ICollecterl)))

(METH ICollecterl IResetl (ItimeNarp? I)
"ensure clear the iv of itself" (Icategory) (SIMULATION-OBJECT)))

(METH ICollecterl Recordl (! event! (flag)
"To record data required by user. If flag is T, NIP will be recorded, otherwise it takes

record deep nnddinglo inndependen;
);

ariable selected.
(-

(SETH ICollecterl IRestDatal (ITypeLstl ItypeAndBatchl)
"deal with rest of data" (Icategoryl (ICollecterl)))

(METH ICollecterl ISPlndicationl NIL
fetch NIP data been colected and then indicate the system state by analysis the data. "

((category! (ICollecterl)))

(SETH lCollecterl SSlndicationl NIL
fetch NIP data been colected and then indicate the system state by analysis the data. " (Icategoryl (ICollecterl)))

(SETH ICollecterl ISState? I (Idatal (intervals!)
"analyse histogram of NIP, thus user can determine whether the system has reached steady

state"(Icategoryl (ICollecterl)))

4

ýMg (Collecterl ISaveDatal NIL
"save data into a file which is with extend. " (Icategoryi (ICollecterl)))

ýý+pq)Collecterl ISaveDataIfWantedl NIL
"Save off the data if the user confirms that he wants to save. " (Icategoryl (ICollecterl)))

(NETH ICollecterl IStartl NIL
"check initial setting, if T- start, otherwise tell user to select them. " (Icategoryl

TOR

(METH ICollecterl IStoreValuel NIL
 aave data into a file. " (Icategoryl (ICollecterl)))

(MOTH t
"switchoff self. "i(IcatelorlL 4 YI (MULTIPLE-ATTRIBUTE-MONITOR)))

({SETH ICollecterl ISwitchOnl NIL
nswitch self on at first, then attach self to all the nodes of the mapTM (Icategoryl

NULTIpLE-ATTRIBUTE-MONITOR

(MOTH ICollecterl ITakeRecordl (leventl)
"record data that user request on self. " (Icategoryl (ICollecterl)))

(METH Icollecteri I\\GetFileStreami (Ikeysl)
Method documentation. ' (Icategoryl (ICollecterl)))

("STH ICollecterl I\\GetLogFileNamel (Ikeysl)
"Method documentation. " (Icategoryl (ICollecterl)))

(I"Othodl ((ICollecterl lAttachldemNodel) Iself 1)
"attach self to all IDEMBOX of an IDEFO new page. "
(LET* ((Idrawingl (E Idrawingl))

()objLatl (E Idrawingl IobjectListl))
(Iboxesl (Iforl Iboxesl lint IobjLstl Iwhenl (Iboxesl IlnstOf1I 'IDEMBOX) Icollectl Iboxesl)))

lift Iboxesl
Ithenl (LET ((InodeLat) (LIST NIL)))

((fort \i Ifroml 1 Itol (LENGTH Iboxesl)
Idol (SETO InodeLstl (APPEND InodeLstl

(LIST (CAR (NTH Iboxesl \i))))))
(_e lattacheesl (CDR InodeLstl))))))

(IMethod) ((ICollecterl IAttachPartialZoomNodel) Iselfl)

wproat for user to pick up nodes of which the process are of interest, then to ask for select
pathaw

"
(- I

C1earPromptWindow
I)

(ygT ((InumOfProcessl (_ ýPromptForwordl
"How many nodes are you interested? ")))

(Iforl \i Ifroml 1 Itol InumofProcesal
Idol (_ iselfl IPrintMessagel "Select " \i " node") (Iselfl IChooseAnObjl))

(_ lselfl TChoosePairOfPathl)))

(I! letbodl ((ICollecterl IAttachZoomNodel) self I)
. attach self to all zoom nodes of a transition slap. "
(LET* ((Idrawingl (I Idrawingl))

()objLstl (I Idrawingl IobjectListl))
(IzoomNodesl (Iforl Inodesi lint IobjLstl Iwhenl (OR (_ Inodesl IlnstOfII

I

ZOOM-STAGE-PROCESS)
(_ Inodesl IlnstOfll

5

yooll-ROUTER-PROCESS)

lift IzoomNodes)
(collect) Inodeal)))

Ithenl (LET ((InodeLstl (LIST NIL)))
Iforl \i ifroml 1 Itol (LENGTH IzoomNodesl)

Idol (SETA InodeLstl (APPEND InodeLstl
(LIST (CAR (NTH IzoomNodesl

ýiýý)))) (_E lattacheesl (CDR InodeLstl))))))

(IKethodl ((ICollecterl IChooseAnObjl) Iself I)
"select an object which can be either a path or a node"
(LET ((IselectedVarl (_ ýSel: drawiect)))

()page? I (! I: drawingl)))
Iifl (Ipage? I IlnstOf! I 'IDEFONEWPAGE)

IthenT (Iifl (AND IselectedVarl (IselectedVarl (InstOftI 'ARROW))
Ithenl (lift (! I:? lowListl)

Ithenl (_8 Iselfl IflowListl (APPEND (! I: flowListl)
(LIST

IselectedVarl
lelsel (! Iselfl IflowListl (LIST IselectedVarl)))

IelseifI (AND IselectedVarl (IselectedVarl IInstOf! I 'IDEMBOX))
Ithenl (lift (! I: boxListl)

Ithenl (_! Iselfl IboxListl (APPEND (! I: boxListl)
(LIST

)selectedVarl)

lelsel (_! IselfI IboxListl (LIST IselectedVarl)))
IelseifI IselectedVarl

Itheni (_ (! 1: drawingl)
IPrintMessageI
"You can only choose flow path or function box. ")

lelsel (_ (! I: drawingl)
IPrintMessageI

"You have to choose flow path or function box before you collect the data you
want. ")

lelseifI (_ Ipage? I IlnstOf! i 'IDEMTRANSITIONMAP)
Ithenl (Iifl (AND Iselectedvarl (IselectedVarl IinstOf! l 'PATH))

Ithenl (lift (! I:! lowListl)
Itheni (_! Iselfl IflowListl (APPEND (! I: flowListl)

(LIST

)selectedVarl

lelsel (! IselfI IflowListl (LIST IselectedVarl)))
helseifI (AND IselectedVarl (OR IselectedVarl tInstOfll

'ZOOM-STAGE-PROCESS)
(_ IselectedVarl IlnstOf! I

'ZOOM-ROUTER-PROCESS)))
Ithenl (lift (! I: boxListl)

Ithenl (_! IselfI (boxListl (APPEND (! I: boxListl)
(LIST

IselectedVarl)
lelsel (! Iselfl IboxListl (LIST IselectedVarl)))

lel. seifI IselectedVarl -
Ithenl (_ (! l: drawingl)

(PrintMessagel
"You can only choose flow path or function box. ")

lelaet (! I: drawingl)
IPrintMessageI

"You have to choose flow path or function box before you collect the data you
want. ")

(_ (! I: drawingl)
)C1earSelectionl)))

111iethodl ((ICollecterl IChooseAnVariablel) self I)
oselect a variable, which can be a input flow or a process time, to record the number in queue

when it occurs. `
(f Is. lfI Idrawingl)
IClearPromptWindowi)
IselfI (PrintHessagei

'Select the input Flow that you want to record the number of queue in this page. ")
(LET ((IselectedVari (_ (! I: drawingl)

6

ISelectObjectl))
(1page? I (e I: drawingl)))

Iifl ((page? I IlnstOf! I 'IDEFONEWPAGE)
Itheni (Iifº (AND IselectedVarl (IselectedVarl IInstOf! I 'ARROW))

Ithenl l 11f1 (8 I: flowListl)
Itheni (_E Iselfl IflowListl (APPEND (E I: flowListº)

(LIST

ýsslectedVar1)))
lelsel (e Iselfl IflowListº (LIST IselectedVarl)))

lelseifI (AND IselectedVarl (_ IselectedVarl IlnstOfII 'IDEMBOX))
Ithenl (lift (0 I: boxListl)

Ithen I (_E Iselfl IboxList) (APPEND (l I: boxListl)
(LIST

selectedVarl)
lelsel (I Iselfl IboxListl (LIST IselectedVarl)))

IelseifI IselectedVarl
Ithenl (_ (8 I: drawingl)

IPrintMessageI
"You can only choose flow path or function box. ")

lelsel (_ (8 I: drawingl)
IPrintMessageI

"You have to choose flow path or function box before you collect the data you

want-"))
lelseifl (_ (page? l IlnstOf! I 'IDEMTRANSITIONMAP)

Itheni (Iifl (AND IselectedVarl (IselectedVarl IlnstOfll 'PATH))
Ithenl (lift (E I:! lowListl)

Ithen) (E Iselfl IflowListl (APPEND (@ I: flowListl)
(LIST

(selectedVarl)))
lelsel (8 Iselfl IflowList) (LIST (selectedVarl)))

IelseifI (AND IselectedgFari (OR (IselectedVarl (InstOfII
'STEM-STAGE-PROCESS)

(IselectedVarl IlnstOf! I
'STEM-ROUTER-PROCESS)))

Ithenl (Iifl (E I: boxListl)
Ithenl (i Iselfl (boxListl (APPEND (I I: boxListl)

(LIST

(selectedVarI)
Ielse I(@ Iselfl IboxListl (LIST IselectedVari)))

IelseifI IselectedVarl
Ithenl (_ (E I: drawingl)

IPrintMessageI
You can only choose flow path or function box. ")

lelsel ((! I: drawingl)
- IPrintMessageI

You have to choose flow path or function box before you collect the data you

want. ")
))

(_ (e I: drawingl)
IClearSelectionl)))

(joethodl ((ICollecterl IChooseMultiPalrPathl) IselfI) "To choose more than one pair of path. "
(e Iselfl Idrawingi)
IClearPromptNindowl)
Iifi (f I: flowListl)

Ithenl (lift (MOUSECONFIRM
"Some path has already been selected, do you sure that you want to change or to add

on? "
NIL (_ Iselfl I\\GetBestMsgStreaml))

Ithenl

(* I;; I to be sure that user want to change")

(LET ((ItheLstl (E I: flowListl))
Inamesl inuml)

Iforl \i Ifroml 1 Itol (LENGTH (I I: flowListl))
Idol (SETO Inamesl

(APPEND Inamesi (LIST (I (CAR (NTH ItheLstl \i))
InameI)))))

(Iifl (MOUSECONFIRM (CONCAT "Paths (input and output) named
InamesI

" has already been chosen. Do you want to add more pair of paths on or to set new pairs of
paths? "

1
NIL

7

(_ Iselfl I\\GetBestMagStreaml))
Itheni

(* 1::) "adding new pair of paths on existing pairs. ")

(SETA Inuml (_ (E I: drawingl)
IPromptForWordI

"Entre the number of pair of path you want to add

on: w)

(Iforl \i Ifroml 1 Itol Inuml
Idol (Iselfl IPickPathal))

IelseI

(* I;; I "prompt user for re-set multi pair of path")

(! I: flowListl NIL)
((selfI IChooseMultiPairPathl))))

Ielse I

(* 1;; I "select multi pair of paths initial")

(LET ((Inuml (_ (E I: drawingl)
IPromptForWordI
"Entre the number of information threds you want to monitor: ")))

Iforl \i Ifroml 1 Itol Inuml Idol (_ Iselfl IPickPathal)))))

(IKethodl ((ICollecterl IChoosePairOfPathl) self I)
"To choose one of flow threds, or to select part of processes of the only flow thred. "

(@ Iselfl Idrawingl)
IClearPromptWindowI)

(lift (e I: flowListl)
Ithen I

(* I;; I "paths has been selected, prompt for re-selection. ")

lift (MOUSECONFIRM (CONCAT (@ (CAR (E I: flowListl))
InameI)

(8 (CADR (I I: flowListl))
InameI)

paths?
 as input and output paths has already been chosen. Do you want to set new pair of

NIL
(Iselfl I\\GetBestMsgStreaml))

Ithenl (! I: flowListl NIL)
(Iselfi IPickPathsl))

lelsel (_ IselfT IPickPathsl)))

(14lethodl ((ICollecterl IChooseVarMenul) self I)
"prompt a menu for user to choose an independent variable. "

(LET ((Imenulteml (createl MENU
ITEMS

_
"(("NIP" (EI: IndVarl 1))

("NIP ana Product Type (PT)" (EI: IndVarl 2))
("NIP and Order Batch Size (OB$)" (II: IndVarl 3))
("NIP, PT and OBS" (_@ I: IndVarl 4)j)

TITLE "WHICH VARIABLE")))
ift ImenuIteml

Ithenl (MENU Imenulteml))))

(IMethodl ((ICollecterl IChooaeVariablesl) self I)
. Select sever l variables when the flow occurs, the number of queue is required to record. "

(el IClearPromptNindowl)
(LET ((Imme (_ (e I: drawingl)

IPromptForWordl "Entre the number of information threds you want to monitor:
w))) (for1 \i froml 1 Itol Imme Idol (_ Iselfl IChooseAnVariablel))))

(IM. thod) ((ICollecterl IConvertTypeToNumberl) Iselfl IoutputDataListl)
"transfer product type - an atom into a numerical number"
(LET ((IreferLstlS(LIST)NIL))

(\n 1))
(forl \i froml 1 Itol (LENGTH loutputDataListl)

Idol (LET ((Itypel (CADR((CAR (NTH IoutputDataListl \i)))))
Itypel IreferLstl))

Ithenl (SETA IreferLstl (APPEND IreferLstl (LIST (typal)))

8

(PUTASSOC Itypel \n ITLetI)
(SETA \n (ADD1 \n)))))

(CDR ITLstI)))

(I14ethodl ((ICollecter) IDSPWIPHistl) Iselfl IWIPdatal Idata)) "display the WIP histogram"
(LET ((Iwindowl (CREATEWD(GETREGION 8

5))
(ItempList) NIL)
(Igapl (FIX (QUOTIENT (LENGTH Idatal)

(LENGTH IWIPdatal))))
(smallest) Ilargestl Ivaluei IfromTimel ItoTimel)

Iforl \i Ifroml 1 Itol (LENGTH Idatal)
Idol (SETQ ItempListl (APPEND ItempListl (LIST (CAAR (NTH Idatal \i))))))

(SETA IsmallestNuml (SMALLEST. IN. LIST ItempListl))
(SETA IlargestNuml (LARGEST. IN. LIST ItempListl))
(Iforl \i Ifroml 1 Itol (LENGTH IWIPdatal)

Idol (TERPRI Iwindowl)
(TERPRI IwindowI)
(PRINTOUT Iwindowl SP 5 "NIP" SP 5 "Frequency")
(TERPRI Iwindowl)
(TERPRI Iwindowl)
(LET ((IpartListl (CAR (NTH IWIPdatal \i)))

(\n IsmallestNuml))
(SETA IfromTimel (CADAR (NTH Idatal (IPLUS 1 (TIMES Igapl (IDIFFERENCE \i

1))))))
(SETA ItoTimel (CADAR (NTH Idatal (TIMES Igapl \i))))

Iforl \j Ifroml IsmalleatNuml Itol IlargestNuml
Idol (Iifl (ASSOC \j IpartListl)

Itheni (SETA Ivalue) (CDR (ASSOC \j IpartListi)))
lelsel (SETA Ivaluel 0))

(PRINTOUT Iwindowl SP 5 \n SP 9 Ivaluel)
(TERPRI Iwindowl)
(SETA \n (ADD1 \n))))

(TERPRI Iwindowl)
(PRINTOUT Iwindowl SP 5 "From time 0 IfromTimel " -- " ItoTimel))))

(l$ethodl ((Icollecterl IDettachAllVariableal) Iself I)
. Dettach all variables been selected before. "

e I: flowListl NIL)
(-@ I: boxListl NIL))

(11{sthodl ((ICollecterl IDettachVariablel) self I)
"dettach a variable that user selected already. "
(LET* MflOwOl (@)

(Iboxesl (I I: boxListl))
(IflowsNamel (Iforl \i Ifroml 1 Itol (LENGTH Iflowal)

Icollectl (e (CAR (NTH Iflowal \i))
InameI)))

(IboxesNamel (Iforl \i Ifroml 1 Itol (LENGTH Iboxesl)
Icollectl (2 (CAR (NTH Iboxesl \i))

litemsi \j Iremoverl Iwhichl)
Icontentsl)))

lift (AND IflowsNamel IboxesNamel)
Ithenl (SETQ litemsl (LIST IflowaNamel lboxesNamel))

IelseifI IflowsNamel
Ithenl (SETQ (itemsI IflowsNamel)

lelseifI IboxesNamel
Ithen) (SETQ litemsi IboxesNamel))

(lift litemal
Ithen) (SETQ 1whichl (MENU (Icreatel MENU

ITEMS litemsl
TITLE - "ilhich variable? "))))

IitI (MEMBER 1whichl IflowsNamel)
Ithenl (SETA \j (CAR (Iforl \i Ifroml 1 Itol (LENGTH Iflowsl)

Icollectl \i
(when((EQ 1whichl (I (CAR (NTH Iflowsl \i))

(! IflowListl (REMOVE (CAR (NTH (flows) \j))
Iosmal)))))

Iflows())
IelseifI (MEMBER 1whichl IboxesNamel)

Ithenl (SETQ \j (CAR ()for) \i Ifroml 1 Itol (LENGTH Iboxeal)
)collect(\i
Iwhenl (EQ 1whichl (/ (CAR (NTH Iboxesl \i))

(1 IboxListl (REMOVE (CAR (NTH (boxes) \i))
(contents))))))

boxes I)))))

(INethodl ((ICollecter) IEventChangedl) Iself1) "if event has changed, true - add hook"
(lift (! I: state:, monitoringEvents? l)

9

Ithenl (_ Iselfl IPrintMessagel (CONCAT "Events were already being monitored by "
(OR (8 I: namel)

(IClassNamel Iselfl))))
lelsel (18'81 fl IChangeStatel 'ImonitoringEvents? l T)

((e T: drawing: controllerl)
- IAddEventHookI IselfI)))

((Nsthodl ((ICollecterl IExpungeDatal) Iself 1)
"delete all of the file present on the current log. "
(IOperateOnLogFiles) (8 I: logi)

'DELFILE))

'1 ethodl ((ICollecterl IGetMetaDescript ionI) self I)
"p rompt for description of file to be saved. "
(RESETLST

(RESETSAVE (TTY. PROCESS (THIS. PROCESS)))
(RESETSAVE (TTYDISPLAYSTREAM (IifI (Itype? I linstancel (8 I: drawingl))

Ithenl (_ (@ I: drawingl)
IGetPromptwindowl))))

(LET ((Idescriptionl (_ Iselfl IPromptForAtoml
"Enter a brief description of the logged data: ")))

lift (NULL Idescriptionl)
Ithenl (IselfI IPrintHessagel "Using default description")

(SETQ Tdescriptionl (CONCAT (E I: controller: thislDl)
"data recorded on" NIL
(GDATE NIL (DATEFORMAT NO. LEADING. SPACES SPACES

NO. SECONDS DAY. OF. WEEK))
"by " INITIALS)))

(MKSTRING Idescriptionl))))

(Imethodl ((ICollecterl IGetMetalndexFileNamel) Iself 1)
"Return index file name in which data file name is saved. "
(pA IX BNSINAME (e I: controller: thisIDI)

E
OIDEM-META-INDEX))

(I$ethodl ((ICollecterl IGetoLengthl) Iself 1)
. Collect qLength (in term of number of order waiting in the queue to process) through

fimulstion controller, the number does not include those order being processing. "
(LET* ((Icontrollerl (@ l

(Iqueuei(Q I controllerlIqueuel))
(lattacheel (! I: attacheeal))
(InumberQl 0))

lift lqueuel
Ithenl (Iforl \i Ifroml 1 Itol (LENGTH (queue))

Idol (LET ((IgLocationl (E (CAR (NTH (queue) \i))
(whom))))

Iifl (AND (MEMBER IgLocationl (attacheel))
Ithenl (SETA InumberQ) (ADD1 InumberQi))

(_! InumberOfOl InumberQl)))))))

((Method) ((ICollecterl IGetQLength2l) Iself 1)
"Collect number of Working In Process (include those being processing)"
(LET ((attac

he
l (I I: attacheesl))

Iforl \i Ifroml 1 Ito) (LENGTH lattacheel)
Idol (SETQ InumberQl (IPLUS InumberQl (E (CAR (NTH lattacheel \i))

(I InumberofQl InumberQl)))
IlocalQLengthl))))

(I. thodl ((ICollelt
(CDR
rl I etWIPD tal) iselfl Idatal) "snap NIP data off"

(FROG ((Ipu
(INIPandTimel NIL))

Iforl \1 Ifroml 1 Itol (LENGTH IpureDatal)
Idol (SETA INIPandTimel (APPEND INIPandTimel (LIST (CDAR (NTH IpureDatal \i))))))

(RETURN INIPandTimel)))

(IKsthodl ((ICollecterl IInitialLogl) Iselfl)
'To obtain independent variables from user, and then set logger. "
(LET ((twhi)honel (_ Iselfl IChoosevarl4enui))

jkey
(IifI (EQ IwhichOnel 1)

" Ithenl (SETA Ikeyl 'NIP)
elseifl (EQ IwhichOnel 2)

Ithenl (SBTQ keyl '(NIP IProductl))
elicit (SQ IwhichOnel 3)

(then) (SETA keyl '(NIP IOrderSatchSizel))
elseifI (8Q IwhichOnel 4)

(then) (SETA keyl *(Nip IProductl IOrderlatchSi: el)))
(_ Iselfl IPutToLog1 (LIST (keyl))))

10

(IMethodl ((ICollecterl IPickPathl) IselfI IwhichPathl)
spick a path, which can be either input or output path. "

(e aelfl (drawing)
IClearPromptNindowl)

(lift (EQ IwhichPathl 1)
thenl (Iselfl IPrintMessagel "Select the Input Flow Path. ")

lelseifI (Q IwhichPathl 2)
Ithenl (_ iselfl IPrintMessagel "Select the output Flow Path. "))

Iselfl IChooseAnObjl)
(e selfl Idrawingl)
IClearPromptWindOWI))

()$ethodl ((ICollecterl IPickPathsl) Iselfl Iflagl)
select several paths, data is required to collect when flow occurs along the paths. "

(e Iselfl Idrawingl)
)ClearPromptWindowl)

(Iforl \i Ifroml 1 Itol 2 Idol (_ IselfI IPickPathl \i)))

(IMethodl ((ICollecterl lProcessDatal) Iselfl IinputlFlowRecordl Iinput2FlowRecordl
Iinput3FlowRecordl IoutputFlowRecordl Ikeyl)

"To process original data to meet metamodel generator's requirement. "
(PRAG ((loutputDataListl (CDR loutputFlowRecordl))

IorderNumberl IinputDL11 IinputDL2I Iwipll Iwip2l linputTimell IinputTime21
ýoutputTimeI InewRecordl lprocessTimel ITypeLstl lotheral)

(Iforl \i Ifroml 1 Itol (LENGTH loutputDataListl)
Idol (lift (AND (NULL Iinput2FlowRecordl)

(NULL Iinput3FlowRecordl))
Ithen I (* \; "only one input path")

(SETA IorderNumberl (CAAR (NTH IoutputDataListl \i)))
(SETA IinputDL1I (CDR IinputlFlowRecordl))
(SETO Iwipll (CADAR (NTH IinputDLll \i)))
(SETA IinputTimell (CADDR (CAR (NTH IinputDL11 \i))))
(SETO IoutputTimel (CADR (CAR (NTH IoutputDataListl \i))))

(* \; "get process time")
(SETA IproceasTimel (DIFFERENCE IoutputTimel linputTimell))

(ifl (AND (LISTP Ikeyl)
(MEMB 'IProductl Ikeyl))

Ithenl (* \;
"automatically to form a product type list in which each type has a corresponding numerical

number") (SETQ ITypeLatl (_ Iselfi IConveztTypsToNumber)
IoutputDataListl))

(_8 I: typeList) ITypeLstl)
(* \;

"convert product type into a usable
number") (SETA lotheral (_ Iselfl IReatDatal (TypaLstl

(CDDR (CAR (NTH 1outputDataListl

\i)
(* \;

"investigation is one of NIP-Product or
p-Product-BatchSize") WI (SETA InewRecordl (APPEND InewRecordl

(LIST (APPEND (LIST

lorderNumberl iwipll

(inputTimell) lotheral
(LIST

1processTimel)))
lelseifI (AND (LISTP Ikeyl)

(MEMB 'IOrderBatchSizei Ikeyl))
Ithenl (SETA lotheral (CDDR (CAR (NTH IoutputDataListl \i))))

(* \; "investigation is
r_BatchSize") (SETA InewRecordl (APPEND InewRecordl

(LIST (APPEND (LIST
(ozNumberl Iwipll

1 inputTirll)
lotheral
(LIST

(p= s1Ti: ae I)))

11

IelseifI (NOT (LISTP Ikeyl))
Ithenl (* \; "investigation is NIP only")

(SETA InewRecordº (APPEND InewRecordl
(LIST (LIST IorderNumberl

1, . pl I
IinputTimell

IelseifI (NULL Iinput3FlowRecordl)
IprocesaTimel)))))

Ithenl (* \; "there are two input paths")
(SETA IorderNumberl (CAAR (NTH IoutputDataListi \i)))
(SETA linputDL1I (CDR linputlFlowRecordl))
(SETA ºwipll (CADAR (NTH IinputDL11 \i)))
(SETA linputTimell (CADDR (CAR (NTH IinputDL11 \i))))
(SETA IinputDL2I (CDR Iinput2FlowRecordl))
(SETA Iwip21 (CADAR (NTH IinputDL21 \i)))
(SETA linputTime2l (CADDR (CAR (NTH linputDL2I \i))))
(SETA IoutputTimel (CADR (CAR (NTH IoutputDataListl \i))))

lift (AND (LISTP Ikeyl)
(MEMB 'IProductI Ikeyl))

Ithenl (SETA (TypeLstº (_ Iselfl IConvertTypeToNumberl
IoutputDataListl))

(_E I: typeListl ITypeLstl)
(* \;

"convert product type into a usable

,, Umber") (SETA lothersl (_ Iselfl IRestDatal ITypeLstl
(CDDR (CAR (NTH IoutputDataListl

\i)
(* \;

"investigation is one of WIP-Product or
=p-product-Batchsize") (SETA ºnewReaordl

(APPEND InewRecordl
(LIST (APPEND (LIST IorderNumberl 1wipil Iwip2I

linputTimell linputTime2I)
Iothersl
(LIST ºoutputTimel)))))

lelseifl (AND (LISTP Ikeyl)
(MEMB ' IOrderBatchSizel Ikeyl))

Ithenl (* \; "investigation is NIP-BatchSize")
(SETA lothersi (CDDR (CAR (NTH IoutputDataListl \i))))
(SETA InewRecordl

(APPEND InewR. cordl
(LIST (APPEND (LIST IorderNumberl Iwipll Iwip2(

IothersI
linputTimell IlnputTime2l)

(LIST loutputTimel)))))
lelseifl (NOT (LISTP Ikeyl))

Ithenl (* \; "investigation is NIP only")
(SETA InewRecordl

(APPEND InewRecordl
(LIST (LIST lorderNumberl Iwipll lwip2l

IjnputTimeil
lelsel

(i(pu`Ti
"thereo are three

eei
input * Put Paths")

(RETURN InewRecordl)))

(l thodl ((ICollecterl lProcessEventl) Iselfl Ieventl ItimeChanged? I)
"Sent to self when an event occurs - take account if it is on the attached page. "
(LET ((! page? I (E l: drawingl))

(ImonitoredEventsl (Iforl \i Ifroml 1 Itol (LENGTH (e I: flowListl))
Icollectl (I (CAR (NTH (e I: flowListl)

\i))
InamsI)))

(IeventPathl (! (! (e leventl Ipackagel)
Idatumi)

Idestinationl))
(lattacheel (! Isattacheesl))
(Iselectorl (! Ieventl Iselectorl)))

Iifl (Ipage? I IlnstOfII 'IDEFONEWPAGE)
IthenT (lift (AND (MEMBER IeventPathl ImonitoredEventsl)

(EQ Iselectorl 'IArrivesl))
Ithenl (IselfI (GetQLength2l event I)

(IseIfl ITakeRecordl Ieventl))
lelseifI (Ipage? I T'InstOfIi 'IDENTRANSITIONMAP)

Ithenl (- lif) (MID (IStringEQAtowl IeventPathl (CAR (LAST ImonitoredEventsl)))

Ithenl
(E Iselectorl 'IArrivesl))

(ýi

12

to record times and value of other independent variable - if there is

=inY") (_ IselfI IRecordl leventl NIL)
lelsel (Iforl \i Ifroml 1 Itol (IDIFFERENCE (LENGTH

IattacheeI

1)
Idol (Iifl (AND (IStringEQAtoml IeventPathl

(CAR (NTH ImonitoredEvental

\i)))
(EQ (selector) 'IArrivesl))

(then)
(* \.

to record WIP of the system when a flow occurs along the selected input

Path") (iselfl IGetQLength2l Ieventl)
(_ Iselfl (Record(leventl T))))

lelsel (ERROR "attached to which page? ")))
leventl)

(I14dreami (1
Ikeyxl) appropriate fileStzeam on log. "

(LET ((IfileStreami
IfileStkeysl Ifi

IselfI
leStreaml)

IfileStreaml))

(IMethodl ((ICollecterl (ReSetl) (self) ItimeWarp? I) "ensure clear the iv of itself"
(Iifl (EQ (: statel)

Ithenl (lift (AND (8 I: logl)
(NULL (8 I: alreadyReset? 1)))

Ithenl (* \;
"there is logged data. Prompt for user to comfirm to save the

ýt='") (IselfI IStoreValuel)
(Iselfl ISaveDatalfWantedl)
(_E I: logl NIL)
(_l I: alreadyReset? I T)) (* \; "reset self's IV")

(eI: numberOfQ(0)
(e(: record((LIST NIL))
(eI: typeListI NIL)

(0 I: drawingl)
IClearPromptWindowl)

(IifI (MOUSECONFIRM
"Do you want to re-select nodes for next run or remain as current

run? " NIL (Iselfl I\\GetBestMagStreaml))
Itheni (EI: flowListl NIL)

(EI: boxListl NIL)))
() Superl Iselfl IReSetl ItimeNarp? I))

()Methodl ((ICollecterl IRecordl) Iselfl levent) Iflagl)
"To record data required by user. If flag is T, NIP will be recorded, otherwise it takes

record depandinq on independent variable selected.
(LET*

((Icontrollerl (I Icontrollerl))
(Itimsl (e Icontrollerl ItimeNowl))
(I ref l (! (I (I I

datum
evv ý; t) I pickage l)

IreferenceI))
(Idestinationl (! (! (CI eevvintl Ipackagel)

IdestinationI))
(IpathNamesl NIL)
(IrecordLstl (I I: recordl))
(IwhatToRecordl (I I: IndVarl))
1pathNameI)

Iforl \i Ifroal 1 Ito) (LENGTH (e I: flowListl))
Idol (SETA IpathNamel (I (CAR (NTH (I I: flowListl)

\i))
nasse 1))

IifI IpathNamesI
IthenI (SETA IpathNam. sI (APPEND IpathNameal (LIST IpathNa*sI)))

lelsel (SETA IpathNaassl (LIST IpathNawei))))
lift (flag)

(then) (* \:
to record NIP (flow occurs on input path

xslectod)"1 (lifI (_ IP=q.? I $XnstOf! $ 'IDEFOAZNPAGE)

13

Ithen I (* \;
"collector is alocated on

IDEFONEWPAGE")
lift (MEMBER Idestinationj IpathNamesº)

Ithenº (lift (AND (NULL (CAR (e I: recordl)))
(NULL (ASSOC Idestinationl IrecordLstl)))

Ithenl (PUTASSOC Idestinationj
(LIST (LIST Irefl (e I: numberOfQº)

ItimeI))
IrecordLetI)

e I: recordl (CDR IrecordLstl))
IelseifT (NULL (ASSOC Idestinationl IrecordLstl))

Ithenl (PUTASSOC Idestinationj
(LIST (LIST Irefl (e I: numberOfQl)

ItimeI))
IrecordLatI)

e I: recordl IrecordLstl)
lelsel (PUTASSOC Idestinationl

(APPEND (CDR (ASSOC Idestinationj
IrecordLstI))

(LIST (LIST IrefI (@

I: numberOfQ1) Itimel)))
IrecordLstI)

(e I: recordl IrecordLstl)))
lelsel - (* \;

"collecter is allocated on
TRANSITIONMAP") I forl \i Ifroml 1 Itol (LENGTH IpathNameal)

Iwhenl (IStringEQAtoml Idestinationl (CAR (NTH IpathNameal \i)))
Idol (IifI (AND (NULL (CAR (@ I: recordl)))

(NULL (ASSOC Idestinationj IrecordLstl)))
Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefl

(e
I: numberofal)

ItimeI))
IrecordLstI)

(eI: recordl (CDR IrecordLstº))
IelseifT (NULL (ASSOC Idestinationj IrecordLatl))

Ithenl (PUTASSOC Idestinationº (LIST (LIST IrefI

(e
I: numberOfOl)

ItimeI))
IrecordLstI)

e I: recordl IrecordLatl) (
_ lelsei (PUTASSOC Idestinationj

(APPEND (CDR (ASSOC Idestinationl

i=ecordLstI)) (LIST (LIST IrefI (e I: numberOfQº)
ItimeI)))

IrecordLstI)
e I: recordl IrecordLstl)))) (

lelsel _ (* \;
"to record data that user wishes (flow occurs on output path

selected)") (LET ((IfiniahTimel (e leventl IqEntryTimel))
(IproductTypel (CAR (e (e (e leventl lpackaqel)

Idatuml)
Idatal)))

(IorderBatchSi zel (CADR (e (e (e leventl Ipackagel)
Idatuml)

data I))))
(ifI (AND (NULL Iflagl)

(EQ IwhatToRecordl 1))
Ithenl (* \; "to record finish time only") Ii fl (EVENP (LENGTH IpathNameal))

Ithenl (Iforl \i Ifroml 0 Itoi (LENGTH IpathNamesi)
Ibyl 2 (when) (IStringEQAtoml Idestinationl

(CAR (NTH IpathNamesl \i)))
Idol (lift (AND (NULL (CAR (I I: recordl)))

(NULL (ASSOC IdestinationI
IrecordLatl

Ithenl (PUTASSOC Idestinationl
(LIST (LIST (ref)

IfinishTimsI)

IreeordLstl)
(! I: recordI (CDR IreeordLetl))

(elseifT (NULL (ASSOC Idestinationj IrecordLatº

14

Ithenl (PUTASSOC Idestinationl
(LIST (LIST IrefI

(finishTimel)

IrecordLatI)
E I: recordl IrecordLetl)

ielael (PUTASSOC Ideatinationl
(APPEND (CDR (ASSOC

id, agitinationj

I recordLst 0)
(LIST (LIST IrefI

IfinishTimel))
IrecordLati)

(E I: recordl IrecordLsti)))
lelsel - (* \; two input patties and one output

path has been attached, and output path is last in the pathNames list. To record finish time")
lift (AND (NULL (CAR (8 I: recordl)))

(NULL (ASSOC Ideatinationl IrecordLatl)))
Ithenl (PUTASSOC Ideatinationl (LIST (LIST Irefl IfinishTimel))

IrecordLstl)
2 I: recordl (CDR IrecordLstl))

lelseifT (NULL (ASSOC Idestinationj IrecordLstl))
Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefl IfinishTimel))

IrecordLstI)
e I: recordl IrecordLstl)

lelsel - (PUTASSOC Idestinationl (APPEND (CDR (ASSOC Idestinationj

IrecordLstI)) (LIST (LIST Irefl

IfinishTimeI))) IrecordLstI)
8 I: recordl IrecordLstl)))

lelseifl (AND (NULL Iflagl)
(EQ IwhatToRecordl 2))

Ithenl (* \;
"to record finish time and product

type ")
(11fl (EVENP (LENGTH IpathNamesl))

Ithenl (Iforl \i Ifroml 0 Itol (LENGTH IpathNamesl)
Ibyl 2 iwhenl (IStringEQAtoml Idestinationl

(CAR (NTH IpathNamesl \i)))
Idol (lift (AND (NULL (CAR (I I: recordl)))

(NULL (ASSOC Idestinationj

1recordLstI
Ithenl (PUTASSOC Idestinationl

(LIST (LIST Irefl
IfinishTimel

IproducttypeI))
IrecordLstl)

I I: recordl (CDR IrecordLat$))
lelseifT (NULL (ASSOC ; destination) IrecordLatl

Ithenl (PUTASSOC Idestinationl
(LIST (LIST Irefl

IfinishTimeI
IproductTypel))

IrecordLstl)
! I: record) IrecordLstl) (

_ Ielsel (PUTASSOC Idestinationj
(APPEND (CDR (ASSOC

IdestinationI

IrecordLstI))
(LIST (LIST Irefl

IfinishTimal

IproductTypel)

IrecordLstl)

(elael (IitI (AND (NULL (CKR (I I: recolydt)))
rdLati)))

(NULL (ASSOC Id. stinationl IrecordLatl)))
Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefl

15

IfinishTimel

{ productTppe I))
IrecordLstl)

! I: recordl (CDR IrecordLstl))
lelseifT (NULL (ASSOC Idestinationj IrecordLstl))

Ithenl (PUTASSOC Idestinationj (LIST (LIST Irefl
IfiniahTimel

(productType l))
IrecordLstl)

(_! I: recordl IrecordLstl)
lelsel (PUTASSOC Idestinationj

(APPEND (CDR (ASSOC Idestinationj

recordLst D)
(LIST (LIST Irefl IfinishTimel

IproductTypel)))
IrecordLstl)

! I: recordl IrecordLstl)))
lelseifl (AND (NULL IflaglT

(EQ IwhatToRecordl 3))
Ithenl (" \;

to record finish time and order batch
size") (Iifl (EVENP (LENGTH IpathNameal))

Ithenl (Iforl \i Ifroml 0 Itol (LENGTH IpathNamesl)
Ibyl 2 Iwhenl (IStringEQAtoml Idestinationj

(CAR (NTH IpathNameal \i)))
Idol (lif) (AND (NULL (CAR (! I: recordl)))

(NULL (ASSOC Idestinationj

IrecordLstI
Itheni (PUTASSOC Idestinationj

(LIST (LIST Irefl

IfiniehTime I

IorderBatchSizel)) IrecordLatI)
10 I: recordl (CDR IrecordLstl))
_ lelseif l (NULL (ASSOC I estinationl (recordLatl

Itheni (PUTASSOC Idestinationj
(LIST (LIST Iref(

IfiniahTime I

IorderBatchSizeI))
IrecordLstl)

(_! I: recordl IrecordLetl)
lelsel (PUTASSOC Idestinationj

(APPEND (CDR (ASSOC

)destination)

IrecordLstl)) (LIST (LIST irafl

(finishTimel

I orderBatchSize I
))I

IrecordLstl)
I: recordl lrecordLatl)))

)else) (lift (AND (NULL (CIR (! I: recordl)))
(NULL (ASSOC Idestinationj IrecordLstl)))

Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefl
IfinishTim.

IorderBatchSizel

IrecordLatl)
(! I: recordl (CDR IrecordLstl))

1elseifT (NULL (ASSOC Idestinationl IrecordLstl))
Ithenl (PUTASSOC)destination) (LIST (LIST Irefl

IfinishTiml

)orderBatchßizel

IrecordLatll
(! I: recordl lreaordLstl)

lelsel (PUTASSOC IdestinationI
(APPEND (CDR (ASSOC Idestination)

16

recordLst D)
(LIST (LIST IrefI IfinishTimel

IorderBatchSizel)))
lrecordLstl)

2 I: recordl IrecordLstl)))
(elseifI (AND (NULL Iflaglj

(EQ iwhatToReco rdl 4))
Ithen I (* \;

to record finish time, product type and order batch
size") lift (EVENP (LENGTH IpathNamesl))

Ithenl (Iforl \1 Ifroml 0 Itol (LENGTH IpathNamesl)
Ibyl 2 Iwhenl (IStringEQAtoml Idestinationl

(CAR (NTH IpathNamesl \i)))
Idol (lift (AND (NULL (CAR (2 I: recordl)))

(NULL (ASSOC IdestinationI

IrecordLstI)))
Ithenl (PUTASSOC Idestination)

(LIST (LIST irefl

ifinishTimel IproductTypel

IorderBatchSizeI)) lrecordLstl)
(EI: recordl (CDR IrecordLstl))

IelseifT (NULL (ASSOC Idestinationl IrecordLstl
))

Ithenl (PUTASSOC Idestinationl
(LIST (LIST Irefl

lfinishTimel IproductTypel

IorderBatchSizeI)) IrecordLatl)
(_8 I: recordl Irecordl IrecordLstl)

lelsel (PUTASSOC Idestinationl
(APPEND (CDR (ASSOC

IdestinationI

lrecordLstl)) (LIST (LIST Iref)

IfinishTime I

IproductTypel

IorderBatahSizei
lrecordLstl)

E I: recordl IrecordLstl)))
lelsel (tiff (AND (NULL (CXR (! I: recordl)))

(NULL (ASSOC Idestinationl IrecordLstl)))
Ithenl (PUTASSQC (destination)

(LIST (LIST IrefI IfinishTimel

lproductType) IorderBatchSisel))
IrecordLstI)

I I: recordl (CDR IrecordLstl))
lelseifT (NULL (ASSOC Idestinationl IrecordLstl))

Ithenl (PUTASSQC Idestination)
(LIST (LIST IrefI IfinishTimsl

IproductType) Iorder8atch8isel))
IrecordLstf)

(I 1: recordl lrecordLstl)
lelsei - (PUTASSOC I, destinationl

(APPEND (CDR (ASSOC IdestinationI
lrecordLstI)) (LIST (LIST (refI Ifinishtimel

IproductTypel
IorderBatchSisel)))

IrecordLstI)
(_I I: records IrecordLstl))))))))

(IKethodl (()Coll cterl IRestDatal) Iselfl 1TypsLstl Ityp. Andnatcbl) "deal with rest of data"
(LET MtYPOI (DR I t l ý

batc i R t ypeM (CAD dBatch I))
(newListl)

17

(IifI (batchSizel
Ithen) (SETQ InewListl (LIST (CDR (ASSOC Itypel ITypeLstl))

IbatchSizel))
lelsel (SETQ InewListl (LIST (CDR (ASSOC Itypel ITypeLstl)))))

(newListl))

(INiethodl ((ICollecterl ISPlndicationl) IselfI)
'fetch NIP data been colected and then indicate the system state by analysis the data. "
(LET ((Idatal (CAR (! I: recordl)))

(lintervalsl (_ (8 I: drawingl)
IPromptForWordl "How many intervals do you interested? "))

IWIPData) IWIPHistDatal)
(SETA IWIPDatal (Iselfl IGetWIPDatai Idatal))
(SETA IWIPHistDatal ((self) ISState? I IWIPDatal lintervalsl))
(Iselfl IDSPWIPHistT IWIPHistDatal IWIPDatal)))

(IMethodl ((ICollecterl ISSlndicationl) self I)
ofetch WIP data been colected and than indicate the system state by analysis the data. "
(LET ((Idatal (CAR (! I: recordl)))

(lintervalsl 2)
IWIPDatai IWIPHistDatal)

(SETA IWIPDatal (_ Iselfl IGetWIPDatal Idatal))
(SETO IWIPHistDatal (Iselfl ISState? I IWIPDatal lintervalsi))
(_ Iselfl IDSPWIPHistT IWIPHistDatal IWIPDatal)))

(IMethodl ((ICollecterl ISState? I) Iselfl Idatal lintervalsl)
"analyze histogram of WIP, thus user can determine whether the system has reached steady

state" (PROG* ((Isizel (LENGTH Idatal))
(Imediuml (FIX (QUOTIENT Isizel lintervalsl)))
(IstartPl 1)
(IendPI (IDIFFERENCE (IPLUS Imediuml IstartPl)

1))
(I intervalP l 1)
IWIPListI IWIPSubLlstl)

(Iwhilel (NEQ IintervalPi lintervalsl)
Idol (SETA IWIPSubListl (LIST NIL))

Iforl \i Ifroml lstartPl Itol IendPI
Idol (LET ((Ikeyl (CAAR (NTH Idatal \i))))

Iifl (NEQ (ASSOC Ikeyl IWIPSubListl)
NIL)

Ithenl (PUTASSOC Ikeyl (IPLUS (CDR (ASSOC Ikeyl

)plPSubListl))
1) IKIPSubListl)

Ielsel (PUTASSOC Ikey) 1 IWIPSubListl))))
(SETA IstartPl (IPLUS IstartPI Imediuml))
(SETA IendPI (IDIFFERENCE (IPLUS Imediuml IstartPI)

1))
(SETA IintervalPI (ADD1 IintervalPl))

lift IWIPListl
Ithenl (SETA IWIPLiatl (APPEND INIPListl (LIST (CDR IWIPSubLiati))))

lelse) (SETA INIPLiatl (LIST (CDR IWIPSubLiatl)))))
(SETA INIPSubListl (LIST NIL))

Iforl \i Ifroml (start? Itol Isizel
Idol (LET ((Ikeyl (CAAR (NTH Idatai \i))))

IifI (NEQ (ASSOC Ikeyl IWIPSubListl)
NIL)

Ithenl (PUTASSOC Ikeyl (IPLUS (CDR (ASSOC ikey) INIPSubLiatl))
1)

leise)
IWIPSubListl)

keyIb111NIPSubListl))))
(Iifl INIPListl

Ithenl (SETA INIPListl (APPEND INIPListl (LIST (CDR INIPSubListl))))
leise) (SETA INIPListl (LIST (CDR INIPSubListl))))

(RETURN INIPListl)))

(Inethodl ((ICollecterl ISaveDatal) IselfI) "save data into a file which is with extend. "
(LOT ((IfileStreaml (OPENSTEEAM (IseifI IGettetaIndexFileNamel)

'OUTPUY
NEM))

(Idescriptionl (_ IselfI (6etNstaDescriptionl)))

(" I;;; I "print tho description string")

(PR1W2 Idescriptionl IfileStreaml)

1;;; l "write out the data ")

18

(PRIN2 (@ I: logt)
IfileStreaml)

1;;; 1 "close the file")

(CLOSEF IfileStreaml)))

((! lethodl ((ICollecterl ISaveDataIfwantedl) Iself 1)
=Save off the data if the user confirms that he wants to save. "

(f I: drawingl)
IC1earPromptwindowl)

((ifI (MOUSECONFIRM "About to save the flow data to disc" NIL (_ IselfI I\\GetBestMsgStreaml))
Ithenl (* \; "save if off")

(_ Iselfl ISaveDatal)
lelsel (* \;

(_ Iselfl IExpungeDatal)))
"get rid of the data already stored")

((Methodl ((ICollecterl IStarti) Iself 1)
"check initial setting, if T- start, otherwise tell user to select them. "
(LET ((IprocessNodeslf(0

J: attacheesl))
(Iboxesl (8 I: boxListl)))
e I: alreadyReset? I NIL)

((e I: drawingl)
- IClearPromptWindowl)

IifI (AND IIOPathl (OR IprocessNodeal Iboxesl))
Ithenl (* \;

"prompt menu for select independent variable(s), and then
start") (_ (e I: drawingl)

IPrintMessageI
"To generate metamodel, choose independent variable(s) from the menu. ")
Iselfl IlnitialLogl)

(T Superl IselfI IStartl)
IelseifI IIOPath)

Ithenl (* \;
"mention user to set input and output paths before running the

model") (_ (t I: drawingl)
IPrintMessagel "Choose process nodes before running the model. ")

IelseifI (OR IprocessNodeal boxes I)
Ithenl (* \;

"mention user to choose process nodes before running the
fidel") (_ (e I: drawingl)

IPrintMessagel "Choose input and output paths before running the model. ")
lelsel (_ (! I: drawingl)

IPrintMessageI
"Choose process nodes, and input and output paths for this run. "))))

(($ethodl ((ICollecterl IStoreValuel) Iselff) "save data into a file. "

Ithenl (LET ((Istreaml (OPENSTREAM (CDAR (f 1: 1091))
'OUTPUT
'NEW))

(Ikeyl (CHAR (e I: logI)))
(Irecordsl (! I: recordl))
(Ipathesl (Iforl \i Ifroml 1 Itol (LENGTH (e I: flowListl))

Icollectl (! (CAR (NTH (8 I: flowListl)
\i))

InameI)))
IinputFlowRecord) IoutputFlowRecordl)

(* 1;;; l "dealinq with original data to meet user requirment before save on file. ")

(tifl (EQ (LENGTH (! I: flowListl))
2)

Ithenl (t \;
only one input path has been chosen") (SETA IinputFlowRecordl (CAR Irecordal))

(SETQ IoutputFlowRecordl (CADR Irecords$))
(SETA InewFlowRecordl (_ Iselfl IProcessDatal IinputFlowRecordl

NIL
NIL IoutputFlowlbcordl Ikeyl))

IelaeifI (Ep (LENGTH (I I: flowListl))
3)

Ithen I (* W
"there are two input paths been

glected")

19

(SETA IinputlFlowRecordl (CAR Irecordal))
(SETA Iinput2FlowRecordl (CADR Irecordal))
(SETA IoutputFlowRecordl (CADDR Irecordel))
(SETO InewFlowRecordl (_ Iselfl IProcessDatal I input lFlowRecord I

Iinput2FlowRecordl NIL
IoutputFlowRecordl Ikeyl))

IelseifI (EQ (LENGTH (E I: flowListl))
4)

Itheni (* \;
"there are three input paths been

selected") (SETA IinputlFlowRecordl (CAR Irecordsl))
(SETA Iinput2FlowRecord) (CADR Irecordsl))
(SETA Iinput3FlowRecordl (CADDR Irecordsl))
(SETA loutputFlowRecordl (CADDDR Irecordal))
(SETA InewFlowRecordl (_ Iselfl IProcesaDatal IinputlFlowRecordl

Iinput2FlowRecordI

Ijnput3FlowRecordI
IoutputFlowRecord) Ikeyl)))

(* \; "write data on file")
(PRIN2 InewFlowRecordl Istreaml)

(* I;;; I "can be used straight away")

(IOperateOnLogFileal (L+ I: logl)
'ICloseLogFilel T))))

((Methodl ((ICollecterl ISwitchOffI) Iselfl) "switch off self. "
(1_Superl))

(IMethodl ((ICollecterl ISwitchOnl) Iselfl)
"switch self on at first, then attach self to all the nodes of the map"
(LET* ((Ipage? I (E I: drawingl))

(IobjLstl (E (page? I IobjectListl))
(lexitsl (Iforl Ijointsl lint IobjLatl Icollectl Ijointsl

Iwhenl (_ Ijointal IlnstOf! I 'IDEFOTAG))))
(_ (e I: drawingl)

IClearPromptwindowl)
ISfI (AND (page? I (page? I IlnstOf! I 'IDEMTRANSITIONMAP))

Ithenl (Iifl (EQ (LENGTH lexitsl)
2)

Ithenl

P,,
(* I;;; I

"onlylonj
thred on the zoomin page so that the collecter attach all zooming nodes of the

(_ Iselfl IAttachZoomNodel)
(_ Iselfl IChoosePairOfPathl)
(_ (E I: drawingl)

IPrintMessageI
"All nodes on this page that you wish to collect data from has been

attached. ")
(elseifI (MOUSECONFIRM "Do you want to attach all nodes on the page? "

(then)
NIL (IselfI 1\\GetBestts9Streaml))

(* I::: I "more than one thred on the zooming page, but all nodes are still of interest so that
collecter attacks itself on")

(_ Iselfl IAttachZoomNodel)
(_ (I I: drawingl)

IPrintMessageI
"Now attach all input pathos first, and then attach output

pathos. ")
(Iforl \i Ifroml 1 Itol (LENGTH lexitsl)

Idol (IselfI IChooseAnObjl))
(e I: drawiegI)

"1111 nodes on this
lPrintMeaaaqel

page that you wish to collect data from has been
attached. ")

Ielsel

(" I:;: I more than one thred on the zoomin page, so the collector only attach those zooming
nodes selected by user. ")

(IselfI IAttachPartialzoomNodel)
(_ (I I: drawingl)

IPrintNessageI
"The nodes you selected on this page has been attached. ")) IelseifI (AND Ipagei) (_ Ipage7JllnstOfII "IDEPONENPAaZ))

QO

Ithenl (Iselfl IAttachldemNodel)
((e T: drawingl)
- IPrintMessagei "All boxes on this page that you wish to collect data from

has been attached. Before initialising simulation, choose input and output path by object mono. "

lelsel (ERROR Iselfl " has been located on wrong page. ")))

(I Superl)
(Iselfl IEventChangedl))

(IMethodl ((ICollecterl ITakeRecordl) IselfI leventl) "record data that user request on self. "
(LET* ((Icontrollerl (E Icontrollerl))

(Itimel (8 Icontrollerl ItimeNow)))
(Irefl (E (8 (8 leventl Ipackagel)

Idatuml)
IreferenceI))

(Idestinationt (E (8 (8 leventl Ipackagel)
Idatum I)

Idestinationl))
((pathNameal NIL)
(IrecordLstl (E I: recordl))
(IwhatToRecordl (C I: IndVari))
IpathNameI)

Iforl \i Ifroml 1 Itol (LENGTH (E I: flowListl))
Idol (SETA IpathNamel (8 (CAR (NTH (@ I: flowListl)

\1))
InameI))

lift IpathNamel
Ithenl (SETA IpathNameal (APPEND IpathNamesl (LIST IpathNamel)))

lelsel (SETA IpathNameal (LIST IpathNamel))))
IifI (NOT (EQUAL Idestinationl (CAR (LAST IpathNames())))

Ithenl (lift (AND (NULL (CAR (6 I: recordl)))
(NULL (ASSOC Idestinationl IrecordLatl)))

Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefl (! I: numberOfQl)
Itim. I))

IrecordLstl)
(EI: recordl (CDR IrecordLstl))

lelseifl (NULL (ASSOC Idestinationl IrecordLstl))
(then) (PUTASSOC (destination) (LIST (LIST Irefl (! I: numberofQl)

ItimeI))
recordLstI)

(_S I: recordl IrecordLatl)
lelsel (PUTASSOC Idestinationl (APPEND (CDR (ASSOC Idestinationi

IrecordLstl))
(LIST (LIST Irefl (S

I: numberOfQl) Itimel)))
IrecordLstI)

(_E I: recordl recordLstl))
leise) (* \; "to record finish time")

(LET ((IfinishTimel (E (event(IgEntryTimsl))
(IproductTypel (CAR (8 l8 (8 leventl Ipackagel)

Idatuml)
datal)))

(IorderBatchSizel (CADR (E (E (E (event((package()
idatuml)

Idatal))))
lif) (EQ IwhatToRecordl 1)

(then) (lifl (AND (NULL (CAR (! I: recordI)))
(NULL (ASSOC Idestinationl IrecordLstl)))

(them (PUTASSOC Idestinationl (LIST (LIST (ref)

IfinishTimel)

IrecordLstI)
! I: recordi (CDR IrecordLatI))

IelseifT (NULL (USOC idestinationl IrecordLstl))
Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefi

1finishTimsl)
1

IrecordLetl)
(! I: recordi lrecordLstl)

101801 (PUTASSOC IdestinationI
(APPEND (CDR (ASSOC Idestinationl

IrecordLstl))
(LIST (LIST Irefl IfinishTimsI)))

IrecordLstI)
(_I I: recordl Ir000rdLstl))

lelseif! (EQ IwhatToRecordl 2)
(* \; Ito record finish time only')

21

Ithen I (* \;
"to record finish time and product

type "1
(lift (AND (NULL (CAR (8 I: recordi)))

(NULL (ASSOC Idestinationl IrecordLatl)))
Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefl IfinishTimel

1ProductTypel)) IrecordLatº)
E I: recordl (CDR IrecordLatl))

IelseifT (NULL (ASSOC Idestinationl IrecordLatl))
Ithenl (PUTASSOC Idestinationl (LIST (LIST Irefl IfiniahTimel

I productType
I))

IrecordLstl)
E I: recordl IrecordLatº) (

_ lelsel (PUTASSOC Idestinationl
(APPEND (CDR (ASSOC Idestinationl

(recordLst D)
(LIST (LIST Irefl IfinishTimel

lproductTypel)))
IrecordLstI)

e º: recordl IrecordLetl))
IelseifI (EQ TwhatToRecordl 3)

Ithenl (* \;
"to record finish time and order batch

site") (lift (AND (NULL (CAR (C I: recordl)))
(NULL (ASSOC ºdestinationº IrecordLstt)))

Ithenl (PUTASSOC Idestination) (LIST (LIST Irefl IfinishTimel

jo=derBatchSizeI)) IrecordLatl)
8 I: recordl (CDR IrecordLstl))

IelseifT (NULL (ASSOC Idestinationl IrecordLatl))
Ithenl (PUTASSOC Idestinationi (LIST (LIST Irefl ºfinishTimel

JorderBatchSizel)) IrecordLatl)
I I: recordl IrecordLstl) (

_ lelsel (PUTASSOC Idestinationl
(APPEND (CDR (ASSOC Idestinationl

ýrecordLstl)) (LIST (LIST Irefl IfinishTimel
IorderBatchSizeI)))

IrecordLatI)
(8I: recordl IrecordLatl))

lelseifI (EQ TwhatToRecordi 4)
Ithenl (* \;

"to record finish time, product type and order batch

" ize") (lift (AND (NULL (CAR (I I: recordl)))
(NULL (ASSOC IdestinationI IrecordLstI)))

Ithenl (PUTASSOC Idestinationl
(LIST (LIST Irefl IfinishTimeº

pjcoductType Iorder8atchSizel))
IrecordLstI)

E I: recordl (CDR IrecordLstl))
IelseifT (NULL (ASSOC Idestinationi IrecordLstl))

Itheni (PUTASSOC Idestinationl
(LIST (LIST IrefI IfinishTimel

(productType IorderBatchSizeI))
IrecordLstI)

(_8 I: recordl Irecordl IrecordLstl)
lelsel (PUTASSOC Idestinationl

(APPEND (CDR (ASSOC (destinations

1recordLstl)) (LIST (LIST Irsfl IfinishTimel
IproductType)

rordergatchSizeI)1)
IrecordLstl)

(EI: recordl IrecordLstl)))))))

(i00thodi
(

(DIRECTORIES(lCallect*r NIL)l
Iselfl Ikeysl) "Method documentation. "

(IlogEntryl (IGetMultiAssocl ikeysl (I I: logl))))
(lift (STREMM IlogEntryl)

ýiý

Itheni IlogEntryl
lelseifI (NULL IlogEntryl)

Itheni (SETA IlogEntryl (OPENSTREAM (_ Iselfl I\\GetLogFileNamel Ikeyal)
'OUTPUT
'NEW))

I: logI (IPutMultiAssocl Ikeysl IlogEntryl (8 I: logl)))
ITogEntryl

lelsel (ERROR IlogEntryl "is not a valid file stream for logging information"))))

({Nethodl ((ICollecterl I\\GetLogFileNamei) lselfl Ikeysl) "Method documentation. "
(LET ((Inamel (APPLY 'PACK*

(CONS (8 I: controller: thisIDI)
(CONS '- (NCONC1 (Ibindl Ilabell Iforl Ikeyl lini Ikeyal

IWhenl (SETA Ilabell
lift (ATOM Ikeyl)

Itheni Ikeyl
lelsel (AND (Itype? I

IinstanceI
key I)

(I Tryl
ITceyl

IGetNamel)))) Ijoinl (LIST Ilabell '-))
(ROOTDATE)))))))

(PACKFILENAME 'NAME (REPLACE-CHARS Inamel '((\ -)
(\ -)

(}
(< . -)

'EXTENSION
'IDEM-META-DATA)))

(I InbaatchMethodDefsI)

(pUTPROPS COLLECTER. SRC COPYRIGHT ("B. YU" 1994 1995))

(DECLARE\: DONTCOPY
(Fljz P (NIL (99155 99166))))

STOP

