99,659 research outputs found

    Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms

    Get PDF
    We survey old and new results about optimal algorithms for summation of finite sequences and for integration of functions from Hoelder or Sobolev spaces. First we discuss optimal deterministic and randomized algorithms. Then we add a new aspect, which has not been covered before on conferences about (quasi-) Monte Carlo methods: quantum computation. We give a short introduction into this setting and present recent results of the authors on optimal quantum algorithms for summation and integration. We discuss comparisons between the three settings. The most interesting case for Monte Carlo and quantum integration is that of moderate smoothness k and large dimension d which, in fact, occurs in a number of important applied problems. In that case the deterministic exponent is negligible, so the n^{-1/2} Monte Carlo and the n^{-1} quantum speedup essentially constitute the entire convergence rate. We observe that -- there is an exponential speed-up of quantum algorithms over deterministic (classical) algorithms, if k/d tends to zero; -- there is a (roughly) quadratic speed-up of quantum algorithms over randomized classical algorithms, if k/d is small.Comment: 13 pages, contribution to the 4th International Conference on Monte Carlo and Quasi-Monte Carlo Methods, Hong Kong 200

    Quantum computing through the lens of control: A tutorial introduction

    Full text link
    Quantum computing is a fascinating interdisciplinary research field that promises to revolutionize computing by efficiently solving previously intractable problems. Recent years have seen tremendous progress on both the experimental realization of quantum computing devices as well as the development and implementation of quantum algorithms. Yet, realizing computational advantages of quantum computers in practice remains a widely open problem due to numerous fundamental challenges. Interestingly, many of these challenges are connected to performance, robustness, scalability, optimization, or feedback, all of which are central concepts in control theory. This paper provides a tutorial introduction to quantum computing from the perspective of control theory. We introduce the mathematical framework of quantum algorithms ranging from basic elements including quantum bits and quantum gates to more advanced concepts such as variational quantum algorithms and quantum errors. The tutorial only requires basic knowledge of linear algebra and, in particular, no prior exposure to quantum physics. Our main goal is to equip readers with the mathematical basics required to understand and possibly solve (control-related) problems in quantum computing. In particular, beyond the tutorial introduction, we provide a list of research challenges in the field of quantum computing and discuss their connections to control

    Modern applications of machine learning in quantum sciences

    Get PDF
    In these Lecture Notes, we provide a comprehensive introduction to the most recent advances in the application of machine learning methods in quantum sciences. We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms for phase classification, representation of many-body quantum states, quantum feedback control, and quantum circuits optimization. Moreover, we introduce and discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning

    Lattice gauge theories simulations in the quantum information era

    Full text link
    The many-body problem is ubiquitous in the theoretical description of physical phenomena, ranging from the behavior of elementary particles to the physics of electrons in solids. Most of our understanding of many-body systems comes from analyzing the symmetry properties of Hamiltonian and states: the most striking example are gauge theories such as quantum electrodynamics, where a local symmetry strongly constrains the microscopic dynamics. The physics of such gauge theories is relevant for the understanding of a diverse set of systems, including frustrated quantum magnets and the collective dynamics of elementary particles within the standard model. In the last few years, several approaches have been put forward to tackle the complex dynamics of gauge theories using quantum information concepts. In particular, quantum simulation platforms have been put forward for the realization of synthetic gauge theories, and novel classical simulation algorithms based on quantum information concepts have been formulated. In this review we present an introduction to these approaches, illustrating the basics concepts and highlighting the connections between apparently very different fields, and report the recent developments in this new thriving field of research.Comment: Pedagogical review article. Originally submitted to Contemporary Physics, the final version will appear soon on the on-line version of the journal. 34 page
    • …
    corecore