3 research outputs found

    Introduction to Liouville Numbers

    Get PDF
    The article defines Liouville numbers, originally introduced by Joseph Liouville in 1844 [17] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and 0 < x − p q < 1 q n . It is easy to show that all Liouville numbers are irrational. Liouville constant, which is also defined formally, is the first transcendental (not algebraic) number. It is defined in Section 6 quite generally as the sum X∞ k=1 ak b k! for a finite sequence {ak}k∈N and b ∈ N. Based on this definition, we also introduced the so-called Liouville number as L = X∞ k=1 10−k! = 0.110001000000000000000001 . . . , substituting in the definition of L(ak, b) the constant sequence of 1’s and b = 10. Another important examples of transcendental numbers are e and π [7], [13], [6]. At the end, we show that the construction of an arbitrary Lioville constant satisfies the properties of a Liouville number [12], [1]. We show additionally, that the set of all Liouville numbers is infinite, opening the next item from Abad and Abad’s list of “Top 100 Theorems”. We show also some preliminary constructions linking real sequences and finite sequences, where summing formulas are involved. In the Mizar [14] proof, we follow closely https: //en.wikipedia.org/wiki/Liouville_number. The aim is to show that all Liouville numbers are transcendental.Grabowski Adam - Institute of Informatics, University of BiaƂystok, BiaƂystok, PolandKorniƂowicz Artur - Institute of Informatics, University of BiaƂystok, BiaƂystok, PolandTom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer- Verlag, 2nd edition, 1997.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and π as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76-87. ACM, 2016.Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71-84, 2011.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.J.H. Conway and R.K. Guy. The Book of Numbers. Springer-Verlag, 1996.Manuel Eberl. Liouville numbers. Archive of Formal Proofs, December 2015. http://isa-afp.org/entries/Liouville_Numbers.shtml, Formal proof development.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015.JarosƂaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.RafaƂ Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Joseph Liouville. Nouvelle dĂ©monstration d’un thĂ©orĂšme sur les irrationnelles algĂ©briques, insĂ©rĂ© dans le Compte Rendu de la derniĂšre sĂ©ance. Compte Rendu Acad. Sci. Paris, SĂ©r.A (18):910–911, 1844.Jan PopioƂek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125-130, 1991.Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1 (5):979-981, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990

    All Liouville Numbers are Transcendental

    Get PDF
    In this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and 0 < x − p q < 1 q n . It is easy to show that all Liouville numbers are irrational. The definition and basic notions are contained in [10], [1], and [12]. Liouvile constant, which is defined formally in [12], is the first explicit transcendental (not algebraic) number, another notable examples are e and π [5], [11], and [4]. Algebraic numbers were formalized with the help of the Mizar system [13] very recently, by Yasushige Watase in [23] and now we expand these techniques into the area of not only pure algebraic domains (as fields, rings and formal polynomials), but also for more settheoretic fields. Finally we show that all Liouville numbers are transcendental, based on Liouville’s theorem on Diophantine approximation.KorniƂowicz Artur - Institute of Informatics, University of BiaƂystok, BiaƂystok, PolandNaumowicz Adam - Institute of Informatics, University of BiaƂystok, BiaƂystok, PolandGrabowski Adam - Institute of Informatics, University of BiaƂystok, BiaƂystok, PolandTom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer- Verlag, 2nd edition, 1997.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and _ as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76-87. ACM, 2016.Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71-84, 2011.CzesƂaw ByliƄski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.CzesƂaw ByliƄski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.J.H. Conway and R.K. Guy. The Book of Numbers. Springer-Verlag, 1996.Manuel Eberl. Liouville numbers. Archive of Formal Proofs, December 2015. http://isa-afp.org/entries/Liouville_Numbers.shtml, Formal proof development.Adam Grabowski and Artur KorniƂowicz. Introduction to Liouville numbers. Formalized Mathematics, 25(1):39-48, 2017.Adam Grabowski, Artur KorniƂowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015.RafaƂ Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.Joseph Liouville. Nouvelle dĂ©monstration d’un thĂ©orĂšme sur les irrationnelles algĂ©briques, insĂ©rĂ© dans le Compte Rendu de la derniĂšre sĂ©ance. Compte Rendu Acad. Sci. Paris, SĂ©r.A (18):910–911, 1844.Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001.Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.MichaƂ Muzalewski and LesƂaw W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.Andrzej Trybulec. Function domains and FrĂŠnkel operator. Formalized Mathematics, 1 (3):495-500, 1990.Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Yasushige Watase. Algebraic numbers. Formalized Mathematics, 24(4):291-299, 2016.Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992

    Introduction to Liouville Numbers

    No full text
    corecore