96 research outputs found

    Invariances and Data Augmentation for Supervised Music Transcription

    Full text link
    This paper explores a variety of models for frame-based music transcription, with an emphasis on the methods needed to reach state-of-the-art on human recordings. The translation-invariant network discussed in this paper, which combines a traditional filterbank with a convolutional neural network, was the top-performing model in the 2017 MIREX Multiple Fundamental Frequency Estimation evaluation. This class of models shares parameters in the log-frequency domain, which exploits the frequency invariance of music to reduce the number of model parameters and avoid overfitting to the training data. All models in this paper were trained with supervision by labeled data from the MusicNet dataset, augmented by random label-preserving pitch-shift transformations.Comment: 6 page

    Beat-Event Detection in Action Movie Franchises

    Get PDF
    While important advances were recently made towards temporally localizing and recognizing specific human actions or activities in videos, efficient detection and classification of long video chunks belonging to semantically defined categories such as "pursuit" or "romance" remains challenging.We introduce a new dataset, Action Movie Franchises, consisting of a collection of Hollywood action movie franchises. We define 11 non-exclusive semantic categories - called beat-categories - that are broad enough to cover most of the movie footage. The corresponding beat-events are annotated as groups of video shots, possibly overlapping.We propose an approach for localizing beat-events based on classifying shots into beat-categories and learning the temporal constraints between shots. We show that temporal constraints significantly improve the classification performance. We set up an evaluation protocol for beat-event localization as well as for shot classification, depending on whether movies from the same franchise are present or not in the training data

    Hidden Markov Models for Gene Sequence Classification: Classifying the VSG genes in the Trypanosoma brucei Genome

    Full text link
    The article presents an application of Hidden Markov Models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the Variant Surface Glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host's immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM.Comment: Accepted article in July, 2015 in Pattern Analysis and Applications, Springer. The article contains 23 pages, 4 figures, 8 tables and 51 reference
    corecore