5,330 research outputs found

    Enhancing Undergraduate AI Courses through Machine Learning Projects

    Full text link
    It is generally recognized that an undergraduate introductory Artificial Intelligence course is challenging to teach. This is, in part, due to the diverse and seemingly disconnected core topics that are typically covered. The paper presents work funded by the National Science Foundation to address this problem and to enhance the student learning experience in the course. Our work involves the development of an adaptable framework for the presentation of core AI topics through a unifying theme of machine learning. A suite of hands-on semester-long projects are developed, each involving the design and implementation of a learning system that enhances a commonly-deployed application. The projects use machine learning as a unifying theme to tie together the core AI topics. In this paper, we will first provide an overview of our model and the projects being developed and will then present in some detail our experiences with one of the projects – Web User Profiling which we have used in our AI class

    A new module system for prolog

    Get PDF
    It is now widely accepted that separating programs into modules has proven very useful in program development and maintenance. While many Prolog implementations include useful module systems, we feel that these systems can be improved in a number of ways, such as, for example, being more amenable to effective global analysis and allowing sepárate compilation or sensible creation of standalone executables. We discuss a number of issues related to the design of such an improved module system for Prolog. Based on this, we present the choices made in the Ciao module system, which has been designed to meet a number of objectives: allowing sepárate compilation, extensibility in features and in syntax, amenability to modular global analysis, etc

    An extensible web interface for databases and its application to storing biochemical data

    Full text link
    This paper presents a generic web-based database interface implemented in Prolog. We discuss the advantages of the implementation platform and demonstrate the system's applicability in providing access to integrated biochemical data. Our system exploits two libraries of SWI-Prolog to create a schema-transparent interface within a relational setting. As is expected in declarative programming, the interface was written with minimal programming effort due to the high level of the language and its suitability to the task. We highlight two of Prolog's features that are well suited to the task at hand: term representation of structured documents and relational nature of Prolog which facilitates transparent integration of relational databases. Although we developed the system for accessing in-house biochemical and genomic data the interface is generic and provides a number of extensible features. We describe some of these features with references to our research databases. Finally we outline an in-house library that facilitates interaction between Prolog and the R statistical package. We describe how it has been employed in the present context to store output from statistical analysis on to the database.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201

    Pengines: Web Logic Programming Made Easy

    Full text link
    When developing a (web) interface for a deductive database, functionality required by the client is provided by means of HTTP handlers that wrap the logical data access predicates. These handlers are responsible for converting between client and server data representations and typically include options for paginating results. Designing the web accessible API is difficult because it is hard to predict the exact requirements of clients. Pengines changes this picture. The client provides a Prolog program that selects the required data by accessing the logical API of the server. The pengine infrastructure provides general mechanisms for converting Prolog data and handling Prolog non-determinism. The Pengines library is small (2000 lines Prolog, 150 lines JavaScript). It greatly simplifies defining an AJAX based client for a Prolog program and provides non-deterministic RPC between Prolog processes as well as interaction with Prolog engines similar to Paul Tarau's engines. Pengines are available as a standard package for SWI-Prolog 7.Comment: To appear in Theory and Practice of Logic Programmin

    Comparison of module usage of project management information system and success rate of construction projects: case study

    Get PDF
    If construction is about delivering a built asset that is of high quality and efficiency, wouldn t most companies use all the tools and processes available at the highest organizational level possible? A major assumption is made that Prolog Manager is an effective Project Management Information System. Saying Company X will benefit from more module use with Prolog Manager system is not the same as saying they will suffer from lack of module usage. If a company has already attained success using manual systems it successes may continue. To be as successful as possible, maximum utilization of all modules of Prolog Manager at the unique project type organizational level is necessary, and correlations can be made between higher module usage and greater project successes with this type of company size and structure.M.S.Committee Chair: Dr. Linda Thomas-Mobley; Committee Member: Dr. Daniel Castro; Committee Member: Prof. Kathy Roper; Committee Member: Ron L. Smit

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education
    • …
    corecore