299 research outputs found

    Summarizing Strategy Card Game AI Competition

    Full text link
    This paper concludes five years of AI competitions based on Legends of Code and Magic (LOCM), a small Collectible Card Game (CCG), designed with the goal of supporting research and algorithm development. The game was used in a number of events, including Community Contests on the CodinGame platform, and Strategy Card Game AI Competition at the IEEE Congress on Evolutionary Computation and IEEE Conference on Games. LOCM has been used in a number of publications related to areas such as game tree search algorithms, neural networks, evaluation functions, and CCG deckbuilding. We present the rules of the game, the history of organized competitions, and a listing of the participant and their approaches, as well as some general advice on organizing AI competitions for the research community. Although the COG 2022 edition was announced to be the last one, the game remains available and can be played using an online leaderboard arena

    Mastering Strategy Card Game (Hearthstone) with Improved Techniques

    Full text link
    Strategy card game is a well-known genre that is demanding on the intelligent game-play and can be an ideal test-bench for AI. Previous work combines an end-to-end policy function and an optimistic smooth fictitious play, which shows promising performances on the strategy card game Legend of Code and Magic. In this work, we apply such algorithms to Hearthstone, a famous commercial game that is more complicated in game rules and mechanisms. We further propose several improved techniques and consequently achieve significant progress. For a machine-vs-human test we invite a Hearthstone streamer whose best rank was top 10 of the official league in China region that is estimated to be of millions of players. Our models defeat the human player in all Best-of-5 tournaments of full games (including both deck building and battle), showing a strong capability of decision making.Comment: cog2023 ful

    Game-based Platforms for Artificial Intelligence Research

    Full text link
    Games have been the perfect test-beds for artificial intelligence research for the characteristics that widely exist in real-world scenarios. Learning and optimisation, decision making in dynamic and uncertain environments, game theory, planning and scheduling, design and education are common research areas shared between games and real-world problems. Numerous open-sourced games or game-based environments have been implemented for studying artificial intelligence. In addition to single- or multi-player, collaborative or adversarial games, there has also been growing interest in implementing platforms for creative design in recent years. Those platforms provide ideal benchmarks for exploring and comparing artificial intelligence ideas and techniques. This paper reviews the game-based platforms for artificial intelligence research, discusses the research trend induced by the evolution of those platforms, and gives an outlook

    v. 27, no. 23, April 21, 1967

    Get PDF

    Symbolic Reasoning for Hearthstone

    Get PDF
    Trading-Card-Games are an interesting problem domain for Game AI, as they feature some challenges, such as highly variable game mechanics, that are not encountered in this intensity in many other genres. We present an expert system forming a player-level AI for the digital Trading-Card-Game Hearthstone. The bot uses a symbolic approach with a semantic structure, acting as an ontology, to represent both static descriptions of the game mechanics and dynamic game-state memories. Methods are introduced to reduce the amount of expert knowledge, such as popular moves or strategies, represented in the ontology, as the bot should derive such decisions in a symbolic way from its knowledge base. We narrow down the problem domain, selecting the relevant aspects for a play-to-win bot approach and comparing an ontology-driven approach to other approaches such as machine learning and case-based reasoning. Upon this basis, we describe how the semantic structure is linked with the game-state and how different aspects, such as memories, are encoded. An example will illustrate how the bot, at runtime, uses rules and queries on the semantic structure combined with a simple utility system to do reasoning and strategic planning. Finally, an evaluation is presented that was conducted by fielding the bot against the stock “Expert” AI that Hearthstone is shipped with, as well as Human opponents of various skill levels in order to assess how well the bot plays. Evaluating how believable the bot reasons is assessed through a Pseudo-Turing test

    v. 43, no. 5, October 7, 1977

    Get PDF

    Counterfactual Regret Minimization を用いたトレーディングカードゲームの戦略計算

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学
    corecore