142,583 research outputs found

    A new kernel method for hyperspectral image feature extraction

    Get PDF
    Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required

    A goal model for crowdsourced software engineering

    Get PDF
    Crowdsourced Software Engineering (CSE) is the act of undertaking any external software engineering tasks by an undefined, potentially large group of online workers in an open call format. Using an open call, CSE recruits global online labor to work on various types of software engineering tasks, such as requirements extraction, design, coding and testing. The field is rising rapidly and touches various aspects of software engineering. CSE has grown significance in both academy and industry. Despite of the enormous usage and significance of CSE, there are many open challenges reported by various researchers. In order to overcome the challenges and realizing the full potential of CSE, it is highly important to understand the concrete advantages and goals of CSE. In this paper, we present a goal model for CSE, to understand the real environment of CSE, and to explore the aspects that can somehow overcome the aforementioned challenges. The model is designed using RiSD, a method for building Strategic Dependency (SD) models in the i* notation, applied in this work using iStar2.0. This work can be considered useful for CSE stakeholders (Requesters, Workers, Platform owners and CSE organizations).Peer ReviewedPostprint (published version
    • …
    corecore