14,003 research outputs found

    Bio-inspired broad-class phonetic labelling

    Get PDF
    Recent studies have shown that the correct labeling of phonetic classes may help current Automatic Speech Recognition (ASR) when combined with classical parsing automata based on Hidden Markov Models (HMM).Through the present paper a method for Phonetic Class Labeling (PCL) based on bio-inspired speech processing is described. The methodology is based in the automatic detection of formants and formant trajectories after a careful separation of the vocal and glottal components of speech and in the operation of CF (Characteristic Frequency) neurons in the cochlear nucleus and cortical complex of the human auditory apparatus. Examples of phonetic class labeling are given and the applicability of the method to Speech Processing is discussed

    PLiMoS, a DSML to Reify Semantics Relationships: An Application to Model-Based Product Lines

    No full text
    In the Model-Based Product Line Engineering (MBPLE) context, modularization and separation of concerns have been introduced to master the inherent complexity of current developments. With the aim to exploit e ciently the variabilities and commonalities in MBPLs, the challenge of management of dependencies becomes essential (e.g. hierarchical and variability decomposition, inter-dependencies between models). However, one may observe that, in existing approaches, relational information (i) is mixed with other concerns, and (ii) lacks semantics and abstraction level identi cation. To tackle this issue, we make explicit the relationships and their semantics, and separate the relational concern into a Domain Speci c Modeling Language (DSML) called PLiMoS. Relationships are treated as rst-class entities and quali ed by operational semantics properties, organized into viewpoints to address distinct objectives, e.g. product derivation, variability consistency management, archi- tectural organization. This paper provides a description of the PLiMoS relationships de nition and its implementation in a model-based product line process using two variability languages: Feature Model and OVM. The independence with variability and core assets modeling languages provides bene ts to cope with the product line maintenance

    Testable constraint on near-tribimaximal neutrino mixing

    Full text link
    General lowest order perturbations to hermitian squared mass matrices of leptons are considered away from the tribimaximal (TBM) limit in which a weak flavor basis with mass diagonal charged leptons is chosen. The three measurable TBM deviants are expressed linearly in terms of perturbation induced dimensionless coefficients appearing in the charged lepton and neutrino flavor eigenstates. With unnatural cancellations assumed to be absent and the charged lepton perturbation contributions to their flavor eigenstates argued to be small, we analytically derive the following result. Within lowest order perturbations, a deviation from maximal atmospheric neutrino mixing and the amount of CP violation in neutrino oscillations cannot both be large (i.e. 1212-17%17 \% ), posing the challenge of verification to forthcoming experiments at the intensity frontier.Comment: published version: JHEP 02 (2015) 13

    Statistical Understanding of Quark and Lepton Masses in Gaussian Landscapes

    Get PDF
    The fundamental theory of nature may allow a large landscape of vacua. Even if the theory contains a unified gauge symmetry, the 22 flavor parameters of the Standard Model, including neutrino masses, may be largely determined by the statistics of this landscape, and not by any symmetry. Then the measured values of the flavor parameters do not lead to any fundamental symmetries, but are statistical accidents; their precise values do not provide any insights into the fundamental theory, rather the overall pattern of flavor reflects the underlying landscape. We investigate whether random selection from the statistics of a simple landscape can explain the broad patterns of quark, charged lepton, and neutrino masses and mixings. We propose Gaussian landscapes as simplified models of landscapes where Yukawa couplings result from overlap integrals of zero-mode wavefunctions in higher-dimensional supersymmetric gauge theories. In terms of just five free parameters, such landscapes can account for all gross features of flavor, including: the hierarchy of quark and charged lepton masses; small quark mixing angles, with 13 mixing less than 12 and 23 mixing; very light Majorana neutrino masses, with the solar to atmospheric neutrino mass ratio consistent with data; distributions for leptonic 12 and 23 mixings that are peaked at large values, while the distribution for 13 mixing is peaked at low values; and order unity CP violating phases in both the quark and lepton sectors. While the statistical distributions for flavor parameters are broad, the distributions are robust to changes in the geometry of the extra dimensions. Constraining the distributions by loose cuts about observed values leads to narrower distributions for neutrino measurements of 13 mixing, CP violation, and neutrinoless double beta decay.Comment: 86 pages, 26 figures, 2 tables, and table of content
    • 

    corecore