5 research outputs found

    Ontology Module Extraction via Datalog Reasoning

    Full text link
    Module extraction - the task of computing a (preferably small) fragment M of an ontology T that preserves entailments over a signature S - has found many applications in recent years. Extracting modules of minimal size is, however, computationally hard, and often algorithmically infeasible. Thus, practical techniques are based on approximations, where M provably captures the relevant entailments, but is not guaranteed to be minimal. Existing approximations, however, ensure that M preserves all second-order entailments of T w.r.t. S, which is stronger than is required in many applications, and may lead to large modules in practice. In this paper we propose a novel approach in which module extraction is reduced to a reasoning problem in datalog. Our approach not only generalises existing approximations in an elegant way, but it can also be tailored to preserve only specific kinds of entailments, which allows us to extract significantly smaller modules. An evaluation on widely-used ontologies has shown very encouraging results.Comment: 13 pages. To appear in AAAI-1

    Conjunctive query answering over unrestricted OWL 2 ontologies

    Get PDF
    Conjunctive Query (CQ) answering is a primary reasoning task over knowledge bases. However, when considering expressive description logics, query answering can be computationally very expensive; reasoners for CQ answering, although heavily optimized, often sacrifice expressive power of the input ontology or completeness of the computed answers in order to achieve tractability and scalability for the problem. In this work, we present a hybrid query answering architecture that combines various services to provide a CQ answering service for OWL. Specifically, it combines scalable CQ answering services for tractable languages with a CQ answering service for a more expressive language approaching the full OWL 2. If the query can be fully answered by one of the tractable services, then that service is used, to ensure maximum performance. Otherwise, the tractable services are used to compute lower and upper bound approximations. The union of the lower bounds and the intersection of the upper bounds are then compared. If the bounds do not coincide, then the “gap” answers are checked using the “full” service. These techniques led to the development of two new systems: (i) RSAComb, an efficient implementation of a new tractable answering service for RSA (role safety acyclic) (ii) ACQuA, a reference implementation of the proposed hybrid architecture combining RSAComb, PAGOdA, and HermiT to provide a CQ answering service for OWL. Our extensive evaluation shows how the additional computational cost introduced by reasoning over a more expressive language like RSA can still provide a significant improvement compared to relying on a fully-fledged reasoner. Additionally, we show how ACQuA can reliably match the performance of PAGOdA, a state-of-the-art CQ answering system that uses a similar approach, and can significantly improve performance when PAGOdA extensively relies on the underlying fully-fledged reasoner

    Introducing Nominals to the Combined Query Answering Approaches for EL

    No full text
    So-called combined approaches answer a conjunctive query over a description logic ontology in three steps: first, they materialise certain consequences of the ontology and the data; second, they evaluate the query over the data; and third, they filter the result of the second phase to eliminate unsound answers. Such approaches were developed for various members of the DL-Lite and the EL families of languages, but none of them can handle ontologies containing nominals. In our work, we bridge this gap and present a combined query answering approach for ELHO r ⊥—a logic that contains all features of the OWL 2 EL standard apart from transitive roles and complex role inclusions. This extension is nontrivial because nominals require equality reasoning, which introduces complexity into the first and the third step. Our empirical evaluation suggests that our technique is suitable for practical application, and so it provides a practical basis for conjunctive query answering in a large fragment of OWL 2 EL
    corecore