12 research outputs found

    A study of information-theoretic metaheuristics applied to functional neuroimaging datasets

    Get PDF
    This dissertation presents a new metaheuristic related to a two-dimensional ensemble empirical mode decomposition (2DEEMD). It is based on Green’s functions and is called Green’s Function in Tension - Bidimensional Empirical Mode Decomposition (GiT-BEMD). It is employed for decomposing and extracting hidden information of images. A natural image (face image) as well as images with artificial textures have been used to test and validate the proposed approach. Images are selected to demonstrate efficiency and performance of the GiT-BEMD algorithm in extracting textures on various spatial scales from the different images. In addition, a comparison of the performance of the new algorithm GiT-BEMD with a canonical BEEMD is discussed. Then, GiT-BEMD as well as canonical bidimensional EEMD (BEEMD) are applied to an fMRI study of a contour integration task. Thus, it explores the potential of employing GiT-BEMD to extract such textures, so-called bidimensional intrinsic mode functions (BIMFs), of functional biomedical images. Because of the enormous computational load and the artifacts accompanying the extracted textures when using a canonical BEEMD, GiT-BEMD is developed to cope with such challenges. It is seen that the computational cost is decreased dramatically, and the quality of the extracted textures is enhanced considerably. Consequently, GiT-BEMD achieves a higher quality of the estimated BIMFs as can be seen from a direct comparison of the results obtained with different variants of BEEMD and GiT-BEMD. Moreover, results generated by 2DBEEMD, especially in case of GiT-BEMD, distinctly show a superior precision in spatial localization of activity blobs when compared with a canonical general linear model (GLM) analysis employing statistical parametric mapping (SPM). Furthermore, to identify most informative textures, i.e. BIMFs, a support vector machine (SVM) as well as a random forest (RF) classifier is employed. Classification performance demonstrates the potential of the extracted BIMFs in supporting decision making of the classifier. With GiT-BEMD, the classification performance improved significantly which might also be a consequence of a clearer structure for these modes compared to the ones obtained with canonical BEEMD. Altogether, there is strong believe that the newly proposed metaheuristic GiT-BEMD offers a highly competitive alternative to existing BEMD algorithms and represents a promising technique for blindly decomposing images and extracting textures thereof which may be used for further analysis

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Structural health monitoring damage detection systems for aerospace

    Get PDF

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Treatise on Hearing: The Temporal Auditory Imaging Theory Inspired by Optics and Communication

    Full text link
    A new theory of mammalian hearing is presented, which accounts for the auditory image in the midbrain (inferior colliculus) of objects in the acoustical environment of the listener. It is shown that the ear is a temporal imaging system that comprises three transformations of the envelope functions: cochlear group-delay dispersion, cochlear time lensing, and neural group-delay dispersion. These elements are analogous to the optical transformations in vision of diffraction between the object and the eye, spatial lensing by the lens, and second diffraction between the lens and the retina. Unlike the eye, it is established that the human auditory system is naturally defocused, so that coherent stimuli do not react to the defocus, whereas completely incoherent stimuli are impacted by it and may be blurred by design. It is argued that the auditory system can use this differential focusing to enhance or degrade the images of real-world acoustical objects that are partially coherent. The theory is founded on coherence and temporal imaging theories that were adopted from optics. In addition to the imaging transformations, the corresponding inverse-domain modulation transfer functions are derived and interpreted with consideration to the nonuniform neural sampling operation of the auditory nerve. These ideas are used to rigorously initiate the concepts of sharpness and blur in auditory imaging, auditory aberrations, and auditory depth of field. In parallel, ideas from communication theory are used to show that the organ of Corti functions as a multichannel phase-locked loop (PLL) that constitutes the point of entry for auditory phase locking and hence conserves the signal coherence. It provides an anchor for a dual coherent and noncoherent auditory detection in the auditory brain that culminates in auditory accommodation. Implications on hearing impairments are discussed as well.Comment: 603 pages, 131 figures, 13 tables, 1570 reference

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas
    corecore