16 research outputs found

    Do HCI and NLP Interact?

    Get PDF
    We examine the relationship between HCI and Natural Language Processing (NLP) by performing a bibliometric analysis and looking at the specific example of BioNLP. We identify opportunities for HCI to fertilise current NLP research and suggest that HCI will benefit from looking at advances in NLP more closely

    Intrinsic evaluation of text mining tools may not predict performance on realistic tasks

    No full text
    Biomedical text mining and other automated techniques are beginning to achieve performance which suggests that they could be applied to aid database curators. However, few studies have evaluated how these systems might work in practice. In this article we focus on the problem of annotating mutations in Protein Data Bank (PDB) entries, and evaluate the relationship between performance of two automated techniques, a text-mining-based approach (MutationFinder) and an alignment-based approach, in intrinsic versus extrinsic evaluations. We find that high performance on gold standard data (an intrinsic evaluation) does not necessarily translate to high performance for database annotation (an extrinsic evaluation). We show that this is in part a result of lack of access to the full text of journal articles, which appears to be critical for comprehensive database annotation by text mining. Additionally, we evaluate the accuracy and completeness of manually annotated mutation data in the PDB, and find that it is far from perfect. We conclude that currently the most cost-effective and reliable approach for database annotation might incorporate manual and automatic annotation methods. 1

    Text Mining Improves Prediction of Protein Functional Sites

    Get PDF
    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions

    What the papers say: Text mining for genomics and systems biology

    Get PDF
    Keeping up with the rapidly growing literature has become virtually impossible for most scientists. This can have dire consequences. First, we may waste research time and resources on reinventing the wheel simply because we can no longer maintain a reliable grasp on the published literature. Second, and perhaps more detrimental, judicious (or serendipitous) combination of knowledge from different scientific disciplines, which would require following disparate and distinct research literatures, is rapidly becoming impossible for even the most ardent readers of research publications. Text mining -- the automated extraction of information from (electronically) published sources -- could potentially fulfil an important role -- but only if we know how to harness its strengths and overcome its weaknesses. As we do not expect that the rate at which scientific results are published will decrease, text mining tools are now becoming essential in order to cope with, and derive maximum benefit from, this information explosion. In genomics, this is particularly pressing as more and more rare disease-causing variants are found and need to be understood. Not being conversant with this technology may put scientists and biomedical regulators at a severe disadvantage. In this review, we introduce the basic concepts underlying modern text mining and its applications in genomics and systems biology. We hope that this review will serve three purposes: (i) to provide a timely and useful overview of the current status of this field, including a survey of present challenges; (ii) to enable researchers to decide how and when to apply text mining tools in their own research; and (iii) to highlight how the research communities in genomics and systems biology can help to make text mining from biomedical abstracts and texts more straightforward

    INTRINSIC EVALUATION OF TEXT MINING TOOLS MAY NOT PREDICT PERFORMANCE ON REALISTIC TASKS

    No full text
    corecore