110,563 research outputs found
A perturbation density functional theory for the competition between inter and intramolecular association
Using the framework of Wertheim's thermodynamic perturbation theory we
develop the first density functional theory which accounts for intramolecular
association in chain molecules. To test the theory new Monte Carlo simulations
are performed at a fluid solid interface for a 4 segment chain which can both
intra and intermolecularly associate. The theory and simulation results are
found to be in excellent agreement. It is shown that the inclusion of
intramolecular association can have profound effects on interfacial properties
such as interfacial tension and the partition coefficient
Dynamic Arrest in Polymer Melts: Competition between Packing and Intramolecular Barriers
We present molecular dynamics simulations of a simple model for polymer melts
with intramolecular barriers. We investigate structural relaxation as a
function of the barrier strength. Dynamic correlators can be consistently
analyzed within the framework of the Mode Coupling Theory (MCT) of the glass
transition. Control parameters are tuned in order to induce a competition
between general packing effects and polymer-specific intramolecular barriers as
mechanisms for dynamic arrest. This competition yields unusually large values
of the so-called MCT exponent parameter and rationalize qualitatively different
observations for simple bead-spring and realistic polymers. The systematic
study of the effect of intramolecular barriers presented here also establishes
a fundamental difference between the nature of the glass transition in polymers
and in simple glass-formers.Comment: 4 pages, 3 figures, 2 table
Multiple relaxation times in single-molecule magnets
Multiple relaxation times detected in the ac magnetic susceptibility of
several single-molecule magnets have been always assigned to extrinsic factors,
such as nonequivalent magnetic centers or effects of intermolecular
interactions in the crystal. By solving quantum relaxation equations, we prove
that the observed multiple relaxation times can be of intramolecular origin and
can show up even in single-ion metal complexes. For the latter a remarkably
good description of the coexistent two relaxation times is demonstrated on
several experimental examples. This proves the relevance of the intramolecular
mechanism of multiple relaxation times in such systems, which is even easier
justified in polynuclear magnetic complexes.Comment: 5 pages, 5 figure
Unusual structure-energy correlations in intramolecular Diels–Alder reaction transition states
Detailed analysis of calculated data from an experimental/computational study of intramolecular furan Diels–Alder reactions has led to the unusual discovery that the mean contraction of the newly forming C-C σ-bonds from the transition state to the product shows a linear correlation with both reaction Gibbs free energies and reverse energy barriers. There is evidence for a similar correlation in other intramolecular Diels–Alder reactions involving non-aromatic dienes. No such correlation is found for intermolecular Diels–Alder reactions
Role of Internal Motions and Molecular Geometry on the NMR Relaxation of Hydrocarbons
The role of internal motions and molecular geometry on H NMR relaxation
times in hydrocarbons is investigated using MD (molecular dynamics)
simulations of the autocorrelation functions for in{\it tra}molecular
and in{\it ter}molecular H-H dipole-dipole interactions
arising from rotational () and translational () diffusion, respectively.
We show that molecules with increased molecular symmetry such as neopentane,
benzene, and isooctane show better agreement with traditional hard-sphere
models than their corresponding straight-chain -alkane, and furthermore that
spherically-symmetric neopentane agrees well with the Stokes-Einstein theory.
The influence of internal motions on the dynamics and relaxation of
-alkanes are investigated by simulating rigid -alkanes and comparing with
flexible (i.e. non-rigid) -alkanes. Internal motions cause the rotational
and translational correlation-times to get significantly shorter
and the relaxation times to get significantly longer, especially for
longer-chain -alkanes. Site-by-site simulations of H's along the chains
indicate significant variations in and across the chain,
especially for longer-chain -alkanes. The extent of the stretched (i.e.
multi-exponential) decay in the autocorrelation functions are
quantified using inverse Laplace transforms, for both rigid and flexible
molecules, and on a site-by-site bases. Comparison of measurements
with the site-by-site simulations indicate that cross-relaxation (partially)
averages-out the variations in and across the chain of
long-chain -alkanes. This work also has implications on the role of
nano-pore confinement on the NMR relaxation of fluids in the organic-matter
pores of kerogen and bitumen
Design of Small Intramolecular Singlet Fission Chromophore: An Azaborine Candidate and General Small Size Effects
We report the first attempt to design small intramolecular singlet fission chromophores, with the aid of quantum chemistry and explicitly simulating the time evolution of state populations using quantum dynamics method. We start with three previously proposed azaborine-substituted intermolecular singlet fission chromophores. Through analyzing their frontier orbital amplitudes, we select a BN-substituted azulene as the building block. Covalently connecting two such monomers and tuning their relative configuration, we examine three dimers. One dimer is found to be an eminent candidate: the triplet-pair state is quickly formed within 1 ps, and the two triplets are ready to be disentangled. We elucidate the general small size effects in intramolecular singlet fission and focus on specific aspects which should be taken care of when manipulating the fission rate through steric hindrance
Formation and destruction of polycyclic aromatic hydrocarbon clusters in the interstellar medium
The competition between the formation and destruction of coronene clusters
under interstellar conditions is investigated theoretically. The unimolecular
nucleation of neutral clusters is simulated with an atomic model combining an
explicit classical force field and a quantum tight-binding approach.
Evaporation rates are calculated in the framework of the phase space theory and
are inserted in an infrared emission model and compared with the growth rate
constants. It is found that, in interstellar conditions, most collisions lead
to cluster growth. The time evolution of small clusters (containing up to 312
carbon atoms) was specifically investigated under the physical conditions of
the northern photodissociation region of NGC 7023. These clusters are found to
be thermally photoevaporated much faster than they are reformed, thus providing
an interpretation for the lowest limit of the interstellar cluster size
distribution inferred from observations. The effects of ionizing the clusters
and density heterogeneities are also considered. Based on our results, the
possibility that PAH clusters could be formed in PDRs is critically discussed.Comment: 14 pages, 14 figures. Astronomy & Astrophysics, accepted for
publicatio
Excitation and characterization of long-lived hydrogenic Rydberg states of nitric oxide
High Rydberg states of nitric oxide (NO) with principal quantum numbers
between 40 and 100 and lifetimes in excess of 10 s have been prepared by
resonance enhanced two-color two-photon laser excitation from the X
ground state through the A intermediate state.
Molecules in these long-lived Rydberg states were detected and characterized
126 s after laser photoexcitation by state-selective pulsed electric field
ionization. The laser excitation and electric field ionization data were
combined to construct two-dimensional spectral maps. These maps were used to
identify the rotational states of the NO ion core to which the observed
series of long-lived hydrogenic Rydberg states converge. The results presented
pave the way for Rydberg-Stark deceleration and electrostatic trapping
experiments with NO, which are expected to shed further light on the decay
dynamics of these long-lived excited states, and are of interest for studies of
ion-molecule reactions at low temperatures.Comment: 12 pages, 10 figure
- …
