202 research outputs found

    On the complexity of range searching among curves

    Full text link
    Modern tracking technology has made the collection of large numbers of densely sampled trajectories of moving objects widely available. We consider a fundamental problem encountered when analysing such data: Given nn polygonal curves SS in Rd\mathbb{R}^d, preprocess SS into a data structure that answers queries with a query curve qq and radius ρ\rho for the curves of SS that have \Frechet distance at most ρ\rho to qq. We initiate a comprehensive analysis of the space/query-time trade-off for this data structuring problem. Our lower bounds imply that any data structure in the pointer model model that achieves Q(n)+O(k)Q(n) + O(k) query time, where kk is the output size, has to use roughly Ω((n/Q(n))2)\Omega\left((n/Q(n))^2\right) space in the worst case, even if queries are mere points (for the discrete \Frechet distance) or line segments (for the continuous \Frechet distance). More importantly, we show that more complex queries and input curves lead to additional logarithmic factors in the lower bound. Roughly speaking, the number of logarithmic factors added is linear in the number of edges added to the query and input curve complexity. This means that the space/query time trade-off worsens by an exponential factor of input and query complexity. This behaviour addresses an open question in the range searching literature: whether it is possible to avoid the additional logarithmic factors in the space and query time of a multilevel partition tree. We answer this question negatively. On the positive side, we show we can build data structures for the \Frechet distance by using semialgebraic range searching. Our solution for the discrete \Frechet distance is in line with the lower bound, as the number of levels in the data structure is O(t)O(t), where tt denotes the maximal number of vertices of a curve. For the continuous \Frechet distance, the number of levels increases to O(t2)O(t^2)

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Approximate range searching☆☆A preliminary version of this paper appeared in the Proc. of the 11th Annual ACM Symp. on Computational Geometry, 1995, pp. 172–181.

    Get PDF
    AbstractThe range searching problem is a fundamental problem in computational geometry, with numerous important applications. Most research has focused on solving this problem exactly, but lower bounds show that if linear space is assumed, the problem cannot be solved in polylogarithmic time, except for the case of orthogonal ranges. In this paper we show that if one is willing to allow approximate ranges, then it is possible to do much better. In particular, given a bounded range Q of diameter w and ε>0, an approximate range query treats the range as a fuzzy object, meaning that points lying within distance εw of the boundary of Q either may or may not be counted. We show that in any fixed dimension d, a set of n points in Rd can be preprocessed in O(n+logn) time and O(n) space, such that approximate queries can be answered in O(logn(1/ε)d) time. The only assumption we make about ranges is that the intersection of a range and a d-dimensional cube can be answered in constant time (depending on dimension). For convex ranges, we tighten this to O(logn+(1/ε)d−1) time. We also present a lower bound for approximate range searching based on partition trees of Ω(logn+(1/ε)d−1), which implies optimality for convex ranges (assuming fixed dimensions). Finally, we give empirical evidence showing that allowing small relative errors can significantly improve query execution times

    Evaluation of Labeling Strategies for Rotating Maps

    Full text link
    We consider the following problem of labeling points in a dynamic map that allows rotation. We are given a set of points in the plane labeled by a set of mutually disjoint labels, where each label is an axis-aligned rectangle attached with one corner to its respective point. We require that each label remains horizontally aligned during the map rotation and our goal is to find a set of mutually non-overlapping active labels for every rotation angle α[0,2π)\alpha \in [0, 2\pi) so that the number of active labels over a full map rotation of 2π\pi is maximized. We discuss and experimentally evaluate several labeling models that define additional consistency constraints on label activities in order to reduce flickering effects during monotone map rotation. We introduce three heuristic algorithms and compare them experimentally to an existing approximation algorithm and exact solutions obtained from an integer linear program. Our results show that on the one hand low flickering can be achieved at the expense of only a small reduction in the objective value, and that on the other hand the proposed heuristics achieve a high labeling quality significantly faster than the other methods.Comment: 16 pages, extended version of a SEA 2014 pape

    On Optimal Top-K String Retrieval

    Full text link
    Let D{\cal{D}} = {d1,d2,d3,...,dD}\{d_1, d_2, d_3, ..., d_D\} be a given set of DD (string) documents of total length nn. The top-kk document retrieval problem is to index D\cal{D} such that when a pattern PP of length pp, and a parameter kk come as a query, the index returns the kk most relevant documents to the pattern PP. Hon et. al. \cite{HSV09} gave the first linear space framework to solve this problem in O(p+klogk)O(p + k\log k) time. This was improved by Navarro and Nekrich \cite{NN12} to O(p+k)O(p + k). These results are powerful enough to support arbitrary relevance functions like frequency, proximity, PageRank, etc. In many applications like desktop or email search, the data resides on disk and hence disk-bound indexes are needed. Despite of continued progress on this problem in terms of theoretical, practical and compression aspects, any non-trivial bounds in external memory model have so far been elusive. Internal memory (or RAM) solution to this problem decomposes the problem into O(p)O(p) subproblems and thus incurs the additive factor of O(p)O(p). In external memory, these approaches will lead to O(p)O(p) I/Os instead of optimal O(p/B)O(p/B) I/O term where BB is the block-size. We re-interpret the problem independent of pp, as interval stabbing with priority over tree-shaped structure. This leads us to a linear space index in external memory supporting top-kk queries (with unsorted outputs) in near optimal O(p/B+logBn+log(h)n+k/B)O(p/B + \log_B n + \log^{(h)} n + k/B) I/Os for any constant hh{log(1)n=logn\log^{(1)}n =\log n and log(h)n=log(log(h1)n)\log^{(h)} n = \log (\log^{(h-1)} n)}. Then we get O(nlogn)O(n\log^*n) space index with optimal O(p/B+logBn+k/B)O(p/B+\log_B n + k/B) I/Os.Comment: 3 figure
    corecore