1,228 research outputs found

    A sufficient condition for the subexponential asymptotics of GI/G/1-type Markov chains with queueing applications

    Full text link
    The main contribution of this paper is to present a new sufficient condition for the subexponential asymptotics of the stationary distribution of a GI/GI/1-type Markov chain without jumps from level "infinity" to level zero. For simplicity, we call such Markov chains {\it GI/GI/1-type Markov chains without disasters} because they are often used to analyze semi-Markovian queues without "disasters", which are negative customers who remove all the customers in the system (including themselves) on their arrivals. In this paper, we demonstrate the application of our main result to the stationary queue length distribution in the standard BMAP/GI/1 queue. Thus we obtain new asymptotic formulas and prove the existing formulas under weaker conditions than those in the literature. In addition, applying our main result to a single-server queue with Markovian arrivals and the (a,b)(a,b)-bulk-service rule (i.e., MAP/GI(a,b){\rm GI}^{(a,b)}/1 queue), we obatin a subexponential asymptotic formula for the stationary queue length distribution.Comment: Submitted for revie

    Exact asymptotics for fluid queues fed by multiple heavy-tailed on-off flows

    Get PDF
    We consider a fluid queue fed by multiple On-Off flows with heavy-tailed (regularly varying) On periods. Under fairly mild assumptions, we prove that the workload distribution is asymptotically equivalent to that in a reduced system. The reduced system consists of a ``dominant'' subset of the flows, with the original service rate subtracted by the mean rate of the other flows. We describe how a dominant set may be determined from a simple knapsack formulation. The dominant set consists of a ``minimally critical'' set of On-Off flows with regularly varying On periods. In case the dominant set contains just a single On-Off flow, the exact asymptotics for the reduced system follow from known results. For the case of several On-Off flows, we exploit a powerful intuitive argument to obtain the exact asymptotics. Combined with the reduced-load equivalence, the results for the reduced system provide a characterization of the tail of the workload distribution for a wide range of traffic scenarios

    Validity of heavy traffic steady-state approximations in generalized Jackson Networks

    Full text link
    We consider a single class open queueing network, also known as a generalized Jackson network (GJN). A classical result in heavy-traffic theory asserts that the sequence of normalized queue length processes of the GJN converge weakly to a reflected Brownian motion (RBM) in the orthant, as the traffic intensity approaches unity. However, barring simple instances, it is still not known whether the stationary distribution of RBM provides a valid approximation for the steady-state of the original network. In this paper we resolve this open problem by proving that the re-scaled stationary distribution of the GJN converges to the stationary distribution of the RBM, thus validating a so-called ``interchange-of-limits'' for this class of networks. Our method of proof involves a combination of Lyapunov function techniques, strong approximations and tail probability bounds that yield tightness of the sequence of stationary distributions of the GJN.Comment: Published at http://dx.doi.org/10.1214/105051605000000638 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Perturbation Analysis of a Variable M/M/1 Queue: A Probabilistic Approach

    Get PDF
    Motivated by the problem of the coexistence on transmission links of telecommunication networks of elastic and unresponsive traffic, we study in this paper the impact on the busy period of an M/M/1 queue of a small perturbation in the server rate. The perturbation depends upon an independent stationary process (X(t)) and is quantified by means of a parameter \eps \ll 1. We specifically compute the two first terms of the power series expansion in \eps of the mean value of the busy period duration. This allows us to study the validity of the Reduced Service Rate (RSR) approximation, which consists in comparing the perturbed M/M/1 queue with the M/M/1 queue where the service rate is constant and equal to the mean value of the perturbation. For the first term of the expansion, the two systems are equivalent. For the second term, the situation is more complex and it is shown that the correlations of the environment process (X(t)) play a key role

    Estimating customer impatience in a service system with unobserved balking

    Full text link
    This paper studies a service system in which arriving customers are provided with information about the delay they will experience. Based on this information they decide to wait for service or to leave the system. The main objective is to estimate the customers' patience-level distribution and the corresponding potential arrival rate, using knowledge of the actual queue-length process only. The main complication, and distinguishing feature of our setup, lies in the fact that customers who decide not to join are not observed, but, remarkably, we manage to devise a procedure to estimate the load they would generate. We express our system in terms of a multi-server queue with a Poisson stream of customers, which allows us to evaluate the corresponding likelihood function. Estimating the unknown parameters relying on a maximum likelihood procedure, we prove strong consistency and derive the asymptotic distribution of the estimation error. Several applications and extensions of the method are discussed. The performance of our approach is further assessed through a series of numerical experiments. By fitting parameters of hyperexponential and generalized-hyperexponential distributions our method provides a robust estimation framework for any continuous patience-level distribution
    corecore