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Abstract
In this paper, we study state space models represented by interval parameters and
noise. We introduce an interval version of the Expectation Maximization (EM)
algorithm for the identification of the interval parameters of the system. We also
introduce a suboptimal interval Kalman filter for the identification and estimation of
the state vectors. The work requires the introduction of the concept of interval
random variables which we also include in this work together with a study of their
interval statistical properties such as expectation, conditional expectation and
variance. Although the interval Kalman filter introduced here is suboptimal, it
successfully recovers the state vectors to a high precision in the simulation examples
we have run.

1 Introduction
In a state spacemodel, some parameters of the system such as the coefficientmatricesmay
not be precisely known or they gradually change with time. One way to account for these
uncertainties is to allow such parameters to be represented by interval entities. The ques-
tion then arises as to how to extend identification and estimation techniques to interval
settings.
To our knowledge, no attempt has been made so far to extend identification techniques

such as the EM algorithm to interval state space models. In this work, we give one such
an extension.
In the existing literature, an optimal interval Kalman filter was attempted in []. That

attempt suffered from the lack of proper definitions and rigorous treatment. The idea in
[] was to replace the interval system setting with the ‘worst case inversion’ while keeping
everything else unchanged. So, the ultimate treatment in [] amounts to the application
of the traditional Kalman filter to the system representing the worst case scenario. This
way the authors were able to avoid the difficulties that arise when dealing with interval
arithmetic and concepts. On the other hand, this algorithm cannot be called optimal and
the concept of the optimal interval Kalman filter remains an open question.
In our work, we introduce a spacial interval arithmetic that always produces results that

are smaller (in the sense that it is contained) than the traditional interval arithmetic [, ].
This arithmetic enables the extension of the Kalman filter as well as the EM algorithm to
interval setting in a true sense. In our restricted interval arithmetic, the interval Kalman
filter we introduce here is optimal. However, with respect to the more general interval
arithmetic, our interval Kalman filter is suboptimal.
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2 A special interval arithmetic
We introduce a special set of interval operations that will enable the extension of the usual
linear system concepts to the interval setting in a seamless manner. The more general
definitions of the interval operations can be found in []. The arithmetic introduced here
avoids such vague terms as ‘interval extension’, ‘inclusion function’, determinants etc. that
have been used in the literature [, –].
All the interval operations adopted in this work stem from the view of an interval as a

set of convex combinations of its endpoints:

I = [a,b] =
{
xα = ( – α)a + αb : α ∈ [, ]

}
.

Definition  Suppose I = [a,b], J = [c,d] are intervals and • ∈ {+,–,∗,÷}. Define the fol-
lowing interval operations:

I • J = {
xα • yα : α ∈ [, ],xα ∈ I, yα ∈ J

}
,

with the usual restriction  /∈ J if • = ÷.

Observe that all operations in Definition  result in intervals since they can be regarded
as continuous functions defined on the unit interval [, ]. For example, a typical element
in I ∗ J is ( – α)ac + α( – α)(ad + bc) + αbd which is a continuous function of α. The
operations in Definition  give similar results to the usual interval operations as given in
[] when • ∈ {+,–}, but generally they give only subintervals if • ∈ {∗,÷}. For example,
if I = [–, ], then I ∗ I = [, ] according to Definition , while the usual definition in []
gives I ∗ I = [–,].
The operations in Definition  are associative:

I + (J +K) = (I + J) +K ,

I ∗ (J ∗K) = (I ∗ J) ∗K

and distributive:

I ∗ (J +K) = I ∗ J + I ∗K .

For example, distributivity is shown as follows:

I ∗ (J +K) =
{
Iα(J +K)α : α ∈ [, ]

}
=

{
Iα(Jα +Kα) : α ∈ [, ]

}
=

{
IαJα + IαKα : α ∈ [, ]

}
=

{
(IJ)α + (IK)α : α ∈ [, ]

}
=

{
(IJ + IK)α : α ∈ [, ]

}
= IJ + IK .

These two properties, which are missing in the usual interval operations, will enable the
extension ofmany results from usual state spacemodels to interval state spacemodels. On
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the other hand, these definitions were motivated by our attempt to arrive at a definition
of interval random variables and investigate the corresponding statistical properties. We
feel that they are the natural ones to handle interval systems. This feeling is reassured by
the numerical results we obtained in the simulation examples (see Section ). While we
expected to obtain a construction of a suboptimal interval Kalman filter, the constructed
filter was actually able to recover the exact simulated intervals rather than subintervals.
Interval vectors and matrices are defined similarly:
• A vector v ∈ IRn is defined as

v = [a,b] =
{
xα = ( – α)a + αb : α ∈ [, ]

}
,

where

a,b ∈R
n, a≤ b,

and the inequality holds componentwise.
• A matrix A ∈ IRn×n is defined as

A = [A,B] =
{
Xα = ( – α)A + αB : α ∈ [, ]

}
,

where

A,B ∈ R
n×n, A≤ B,

and the inequality holds componentwise.

Definition  Given a function f :Rk →R
n and an interval vector v ∈ IRk , we define

f (v) =
{
f (xα) : α ∈ [, ]

}
.

If f is continuous, then f (v) is an interval vector. All operations on functions are extended
to interval settings in the same way. For example,

fg(v) = f (v)g(v) =
{
f (xα)g(xα) : α ∈ [, ]

}
,

df
dv

=
{

df
dxα

: α ∈ [, ]
}
,

provided that the involved operations make sense. In the same spirit, interval matrix op-
erations are defined as follows:
• The interval determinant is defined by

det(A) =
{
det(Xα) : α ∈ [, ]

}
.

• The interval adjoint is defined by

adj(A) =
{
adj(Xα) : α ∈ [, ]

}
.

http://www.advancesindifferenceequations.com/content/2012/1/172
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• The interval inverse is defined by

A– =
{
X–

α : α ∈ [, ]
}

=
{
adj(Xα)
det(Xα)

: α ∈ [, ]
}

=
adj(A)
det(A)

.

The continuous dependence of the determinant of a matrix on the elements of the
matrix implies that all the above operations produce interval entities. Naturally, these
special definitions produce results that are contained in the corresponding usual
definitions. To give an example, we use the definition of the inverse interval matrix
A– according to []:

A– =
[{
X– : X ∈A

}]
,

where [S] is the smallest interval vector (matrix) containing S . If

A =

[
[] [–, ]

[–, ] []

]
,

then

S =
{
X– : X ∈A

}
=

{[


–rs – r
–rs

– r
–rs


–rs

]
: r, s ∈ [–, ]

}
.

One can show that the set of points in R
 with coordinates equal to the first row of the

elements of S forms a polygonal (non-rectangular) region with vertices at (  ,

 ),

(  , ), (

 ,


 ), (


 , –


 ), (


 , –


 ). Thus,

A– = [S] =
[
[  ,


 ] [– 

 ,

 ]

[– 
 ,


 ] [  ,


 ]

]
.

The inverse in our sense is

A– =

[
[  ,


 ] [,  ]

[,  ] [  ,

 ]

]
.

• Suppose that A– exists. We define the solution of the interval linear system AX = b to
be

X =
{
X ∈R

n : AαX = bα ,α ∈ [, ]
}
.

Clearly, X is an interval vector. The usual definition is

S =
{
X ∈R

n : ∃A ∈A,b ∈ b,AX = b
}
.
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Obviously, our definition produces a smaller interval vector. In fact, if A– exists in the
sense of [], then

X⊂ S ⊂ [S] ⊂A–b.

The last inclusion holds because ifX ∈ S , then there is anA ∈A and a b ∈ bwithAX = b.
Then X = A–b ∈A–b ⊂A–b. Thus, S ⊂A–b. Noting thatA–b is an interval vector and
[S] is minimal, we get that [S]⊂A–b.
For the rest of this paper, we will use the special interval operations defined above.
Finally, for error estimates, we need to introduce the distance between two intervals

I = [a,b], J = [c,d]. This is defined by

q(I, J) :=max
{|a – c|, |b – d|}.

The map q defines a metric in IR.

3 Interval random variables
We begin by discussing the measurability of set-valued maps and then introduce the defi-
nition of an interval random variable. The basic definitions and more details can be found
in []. A measurable space (�,A) consists of a basic set � together with a σ -algebra A
of subsets of � called measurable sets. Here, we consider closed convex value set-valued
maps F : � ⇒R

k , i.e., F(ω) is a closed convex subset of Rk for each ω ∈ �. This is the case
when F is interval valued. The latter notion means that for each ω ∈ �, the components
of F(ω) are closed intervals in R.
We first define what it means for a set-valued map to be measurable. Recall that the

inverse image of a set S ⊂ R
k under the set-valued map F is defined by

F–(S) =
{
ω ∈ � : F(ω)∩ S 	=∅

}
,

and that the graph of F (denoted by GF ) is defined by

GF =
{
(ω, y) : ω ∈ �, y ∈ F(ω)

}
.

Definition  Let (�,A) be a measurable space and F : � ⇒ R
k be a set-valued map. F is

called measurable if the inverse image of each open set is a measurable set: if O ⊂ R
k is

open, then F–(O) ∈A.

We are now in a position to introduce the definition of interval random variables and
interval stochastic processes.

Definition  Let (�,S ,P) be a probability space. An interval-valued map X : � ⇒ R
k is

called an interval random variable if
. X is measurable, and
. the function x 
→ px is continuous on X , where px is the probability density function

for the random variable x.
An interval stochastic process is an indexed set of interval random variables.

http://www.advancesindifferenceequations.com/content/2012/1/172
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The probability density function pX is then the interval-valued function

pX = {px : x ∈ X}.

In order to study the expectations and variances of interval random variables, we need
to discuss first the integral of set-valued maps and, in particular, interval-valued maps.
The discussion begins with the notion of measurable selections.

Definition  Let (�,A) be ameasurable space and F :� ⇒R
k be ameasurable set-valued

map. A measurable selection of F is a measurable map f : � → R
k satisfying f (ω) ∈ F(ω)

for each ω ∈ �.

It is well known that every measurable set-valued map has at least one measurable se-
lection []. Furthermore, we have the following equivalences [].

Theorem  Let (�,A) be a measurable space and denote by B the σ -algebra of Borel sets
in R

k . Let F : � ⇒R
k be a set-valued map. The following are equivalent.

. F is measurable.
. GF ∈A⊗B.
. F–(B) ∈A for every B ∈ B.
. There exists a sequence of measurable selections {fn}∞n= of F such that

F(ω) =
⋃
n≥

fn(ω)

for each ω ∈ �.

A countable family of measurable selections satisfying the last property is called dense.
Let F :� ⇒R

k be an interval-valued map.We define the two special functions lF and rF
such that lF (ω) = a(ω) and rF (ω) = b(ω), where F(ω) = [a(ω),b(ω)] for eachω ∈ �. The next
lemma shows that lF and rF are measurable selections of F when the latter is measurable.

Lemma  Let F :� ⇒R
k be a measurable interval-valued map. Then the point functions

lF and rF are measurable selections of F .

Proof Choose a sequence of measurable selections {fn}∞n= of F such that

F(ω) =
⋃
n≥

fn(ω).

Then lF (ω) = infn≥ fn(ω) and rF (ω) = supn≥ fn(ω) (here the inf and sup operations are taken
componentwise). Since the inf and the sup operators preserve measurability, we see that
the functions lF and rF are measurable selections of F . �

Example Let � = [,∞) and define F :� ⇒R by

F(t) =
[
t, t +


t

]
.

http://www.advancesindifferenceequations.com/content/2012/1/172
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Let {rn}∞n= be an enumeration of the rational numbers in the interval [, ], and let us
assume that r = , r = . Define fn : [,∞) →R by

fn(t) = rnt + ( – rn)
(
t +


t

)
.

Thus, lF (t) = t = f(t) and rF (t) = (t + 
t ) = f(t). For every t ∈ [,∞), the set {rnt + (– rn)(t +


t )}∞n= is dense in the interval [t, t + 

t ]. Thus, F(t) =
⋃

n≥ fn(t).

Now suppose that (�,A,μ) is a measure space and F : � ⇒ R
k is a set-valued map.

A measurable selection f of F is an integrable selection if f is integrable with respect to
the measure μ. The set of all integrable selections of F will be denoted byF . The map F is
called integrably bounded if there exists a μ-integrable function g ∈ L(�;R,μ) such that
F(ω) ⊂ g(ω)B for μ-almost every ω ∈ �. Here, B denotes the unit ball in R

k . In this case,
every measurable selection f of F is also an integrable selection since f (ω) ∈ F(ω)⊂ g(ω)B
implies that ‖f (ω)‖ ≤ |g(ω)|, where ‖ · ‖denotes the Euclidean norm on R

k .

Definition  The integral of a set-valued map F is defined to be the set of integrals of
integrable selections of F . That is,

∫
�

F dμ =
{∫

�

f dμ : f ∈F
}
. ()

We shall say that F is integrable if every measurable selection is integrable.

We have the following immediate properties:

∫
�

λF dμ = λ

∫
�

F dμ, ()

∫
�

(F + F)dμ =
∫

�

F dμ +
∫

�

F dμ. ()

Lemma  Let F :� ⇒R
k be an interval-valued map. If lF and rF are integrable, then F is

integrable and

∫
�

F dμ =
[∫

�

lF dμ,
∫

�

rF dμ

]

=
{∫

�

fα dμ : fα = αlF + ( – α)rF ,α ∈ [, ]
}
.

Proof The first equality is shown as follows. Since for every ω ∈ � and every integrable
selection f of F we have lF (ω) ≤ f (ω) ≤ rF (ω),

∫
�

lF (ω)dμ ≤
∫

�

f (ω)dμ ≤
∫

�

rF (ω)dμ.

Therefore,

∫
�

F dμ ⊆
[∫

�

lF dμ,
∫

�

rF dμ

]
.

http://www.advancesindifferenceequations.com/content/2012/1/172
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On the other hand, let θ ∈ [
∫
�
lF dμ,

∫
�
rF dμ]. We may write θ = ( – α)

∫
�
lF dμ +

α
∫
�
rF dμ for some α ∈ [, ]. Then

θ =
∫

�

(
( – α)lF + αrF

)
dμ

=
∫

�

fα dμ,

where fα = ( – α)lF + αrF . Hence, θ ∈ ∫
�
F dμ.

The second equality is an immediate consequence of this. �

It will always be assumed that both lF and rF are integrable.

Example Let� and F be defined as in the previous example. Letμ be themeasure defined
by

dμ =

t

dt.

Then
∫

�

F dμ =
[∫ ∞


lF (t)dμ,

∫ ∞


rF (t)dμ

]
=

[
,



]
.

In view of (), we have the following corollary.

Corollary  Let F,F : � ⇒R
k be integrable interval-valued maps. Then

∫
�

(F + F)dμ =
∫

�

F dμ +
∫

�

F dμ

=
[∫

�

lF dμ,
∫

�

rF dμ

]
+

[∫
�

lF dμ,
∫

�

rF dμ

]

=
[∫

�

(lF + lF )dμ,
∫

�

(rF + rF )dμ

]
.

Let (�,S ,P) be a probability space, and let Z : � ⇒ R
k be an interval random variable.

We have

Z(ω) =
[
lZ(ω), rZ(ω)

]
=

{
zα := ( – α)lZ(ω) + αrZ(ω) : α ∈ [, ]

}
.

We shall say that Z is normally distributed if each z ∈ Z is normally distributed. An in-
terval stochastic process {Zt}t∈T will be called normally distributed if for each t ∈ T , Zt is
normally distributed.
Let Z be an interval random variable. Then for each z ∈ Z,

plz ≤ pz ≤ prz .

By the continuity of z 
→ pz ,

pZ = [plz ,prz ].

http://www.advancesindifferenceequations.com/content/2012/1/172
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This means that

lpZ = plz , rpZ = prz .

Guided by this and Lemma, we can define the interval expectation of the interval random
variable Z as follows.

Definition  The interval expectation of an interval random variable Z is defined as

E(Z) =
[
E(lZ),E(rZ)

]
.

This definition coincides with Definition  since

[
E(lZ),E(rZ)

]
=

{
αE(lZ) + ( – α)E(rZ) : α ∈ [, ]

}
=

{
E
(
αlZ + ( – α)rZ

)
: α ∈ [, ]

}
=

{
E(zα) : α ∈ [, ]

}
.

It should also be noted that the expectation of a vector random variable is the vector of
expectations of its components.
It follows from equations () and () that

E(λZ) = λE(Z),

E(Z + Z) = E(Z) + E(Z).

Also, if I = [a,b] and Z is an interval random variable, then

E(IZ) =
{
E(tαzα) : α ∈ [, ]

}
=

{
tαE(zα) : α ∈ [, ]

}
= I ∗ {

E(zα) : α ∈ [, ]
}

= IE(Z).

The same is true if I is an interval vector and Z is an interval random variable.
More generally, if A is a k × k interval matrix and if its columns are denoted by the

interval vectors A,A, . . . ,Ak , then

E(AZ) = E

( k∑
j=

AiZj

)

=
k∑
j=

E(AiZj) =
k∑
j=

AiE(Zj)

= AE(Z).

To introduce covariance of two interval random variables Y , Z, we need to assume that
the function (x, y) 
→ px,y is continuous on Y ×Z. Here, px,y is the joint probability density
function of the two random variables x, y.

http://www.advancesindifferenceequations.com/content/2012/1/172
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Definition  The interval covariance of two interval random variables Y , Z is defined
as

Cov(Y ,Z) =
{
Cov(yα , zα) : α ∈ [, ]

}
.

To see that Cov(Y ,Z) is an interval, note that

Cov(Y ,Z) =
{
Cov

(
( – α)lY + αrY , ( – α)lZ + αrZ

)
: α ∈ [, ]

}
=

{
( – α)Cov(lY , lZ) + α( – α)Cov(lY , rZ)

+ α( – α)Cov(rY , lZ) + αCov(rY , rZ) : α ∈ [, ]
}
.

If Y = Z, we get the definition of the variance of an interval random variable Z as

Var(Z) =
{
Var(zα) : α ∈ [, ]

}
=

{
( – α)Var(lZ) + α( – α)Cov(lZ , rZ) + αVar(rZ) : α ∈ [, ]

}
which is also an interval. Elementary calculus considerations reveal that

Var(Z) =
[

ab – c

a + b – c
,max{a,b}

]
,

where a = Var(lZ), b = Var(rZ), c = Cov(lZ , rZ). This last equation provides a formula for
computing the interval Var(Z).
For interval random vectors, the above definitions hold componentwise.
The two interval random variables Y , Z will be called uncorrelated if for each yα ∈ Y ,

zα ∈ Z, yα , zα are uncorrelated. Therefore, Y , Z are uncorrelated if and only if Cov(Y ,Z) =
[].
It is now straightforward to check the following theorem.

Theorem  Let Y,Z ∈ IRk ,W ∈ IRm, IRn be interval random vectors, and letA ∈ IRk′×k ,
B ∈ IRm′×m, λ ∈ IR, then
. Cov(λY,W) = λCov(Y,W),
. Cov(Y +Z,W) = Cov(Y,W) +Cov(Z,W),
. Cov(AY,BW) =ACov(Y,W)BT .

The assumed continuous dependence of the probability density function (joint density
function) on the random variable (variables) in an interval random variable (interval ran-
dom variables) implies that the conditional probability density function is also continuous.
This guarantees that the generalization of the conditional density function to the interval
setting is always an interval.

Definition  The interval conditional expectation is defined as

E(Z|Y ) = {
E(zα|yα) : α ∈ [, ]

}
=

{
αE(lZ|yα) + ( – α)E(rZ|yα) : α ∈ [, ]

}
.

http://www.advancesindifferenceequations.com/content/2012/1/172
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The following theorem is easily checked.

Theorem  For vector random variables X, Y, Z and interval matrix A of appropriate
dimensions,
. E(X +Y|Z) = E(X|Y) + E(Y|Z),
. E(AY|Z) =AE(Y|Z).

4 The interval state spacemodel
The interval state space model we will consider here is one of the form

xt+ =Axt +wt , ()

yt =Hxt + vt , t ≥ , ()

where A ∈ IRk×k , H ∈ IRp×k are interval matrices and wt ∈ IRk , vt ∈ IRp are zero-mean
Gaussian white-noise interval processes, with

Cov

([
wt

vt

]
,

[
ws

vs

])
=

[
Q 
 R

]
δts,

while the initial state x is assumed to be an interval random variable having zero-mean,
interval variance matrix � and to be uncorrelated to {wt} and {vt} for all t ≥ . The
matricesQ ∈ IRk×k ,R ∈ IRp×p are also allowed to be interval matrices. For the time being,
we assume that the matrices F, H, Q, R are known a priori. We thus have the properties

Cov(wt ,xs) = , Cov(vt ,xs) = , s ≤ t,

Cov(wt ,yt) =Q, Cov(vt ,yt) = R.

For the state covariance matrix

�t = Cov(xt ,xt),

we have the recursion

�t+ =A�tAT +Q, t ≥ 

with initial value �.

4.1 The interval Kalman filter
In this section, we give a summary of the interval settings of the Kalman filter and the EM
algorithm. The ground work that we did in the previous two section should reveal that it
is possible to apply both methods to interval state space models. Let Ys = {y,y, . . . ,ys} be
a sequence of interval measurements up to time s and let

xst = E(xt|Ys).

http://www.advancesindifferenceequations.com/content/2012/1/172
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The expectation is a forecast for s < t, a filtered value for s = t and a smoothed value for
s > t. The least square estimation error is defined by

Ps
t = E

((
xt – xst

)(
xt – xst

)T)
.

The interval Kalman filter is defined in two main steps: estimation and forecast [, ].
The estimation step is given by

xt–t =Axt–t–, Pt–
t =APt–

t–A
T +Q,

and the forecast step is given by

xtt = xt–t– +Kt
(
yt –Hxt–t–

)
, ()

Pt
t = (I –KtH)Pt–

t , t = , , . . . ,n, ()

where

Kt = Pt–
t

(
HPt–

t HT +R
)–

is called the Kalman gain. The initial conditions are x = μ and P
 = �.

The interval Kalman smoother, which is needed for the EM algorithm, is defined by

xnt = xtt + Jt
(
xnt+ – xtt+

)
, ()

Pn
t = Pt

t + Jt
(
Pn
t+ – Pt

t+
)
JTt , ()

where

Jt = Pt
tA

T(
Pt
t+

)–.
The initial conditions xnn and Pn

n in this case are found from () and (). The EM algo-
rithm also needs the so-called lag-one covariance smoother defined by

Pn
n,n– = (I –KnH)APn–

n–,

Pn
t,t– = Pt

tJ
T
t– + JTt

(
Pn
t+,t –APt

t
)
JTt–, t = n – ,n – , . . . , .

()

.. The EM algorithm in interval setting
The EM algorithm [–] tries to estimate the parameter set � = {A,H,Q,R} of the sys-
tem (), () by maximizing the likelihood of its probability density function P(x,�). The
algorithm consists of two steps, the expectation step (E-step) and the maximization step
(M-step). The E-step uses the current available parameter set� to obtain estimates for the
state vector and the least square error. This step is based on the Kalman filter and Kalman
smoother. The M-step uses the current estimated values of the state vector and errors to
obtain a new parameter set according to the equations

A =CB–, ()

Q =

n

(
D –CB–CT)

, ()
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H = SD–, ()

R =

n

(
U – SD–ST

)
, ()

where

B =
n∑
t=

xnt–
(
xnt–

)T + Pn
t–, C =

n∑
t=

xnt
(
xnt–

)T + Pn
t,t–,

D =
n∑
t=

xnt
(
xnt

)T + Pn
t , S =

n∑
t=

yt
(
xnt

)T ,
U =

n∑
t=

ytyTt .

The method can be summarized as follows.
. Initialize the procedure by selecting starting values for the elements of the parameter

set �() = {A(),H(),Q(),R()} and estimate μ.
. (E-step) For j = , , . . . , use the parameter set �(j–) to estimate the smoothed values

xnt ,Pn
t , Pn

t,t– (equations ()-()) for t = , , . . . ,n.
. (M-step) Calculate a new set of parameters �(j) using equations ()-().
. Repeat steps  and  above until convergence is achieved.

5 Simulation results
A  Monte Carlo simulation is performed to illustrate the utility of the interval EM al-
gorithm estimate. The observed data are generated according to the second order interval
state space model

xt+ =

[
[., .] [–., .]
–. [–., .]

]
xt +wt , t = , . . . , ,, ()

yt =
[
 [., .]

]
xt + vt , ()

where wt and vt are independent identically distributed (i.i.d.) Gaussian noises such that

wt ∼N

(
,

[
[., .] 

 [., .]

])
,

Rt ∼N
(
, [., .]

)
.

This model is a slightly modified version of the one used in []. In all simulations, the
number of iterations for the EM algorithm is fixed at J = . We used the α values of
α =  : . :  for the interval estimates. Figure  shows a sample of realizations of the
minimum, true and maximum observed output data yt respectively, while Figure  shows
the corresponding interval EM estimate of the output observation. Figure  compares
the maximum and estimated observed output signals, and Figure  shows the minimum
and estimated observed output signal. Furthermore, we computed the mean square error

http://www.advancesindifferenceequations.com/content/2012/1/172
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Figure 1 Output signals.

Figure 2 Estimated output signals.

Figure 3 Maximum observed and estimated output signals.

(MSE):

EN =

N

N∑
t=

(yt –Cxt|t–)

between the maximum observed and estimated output. The  run gave an MSE of
.. A similar computation for the minimum gave an MSE of ..
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Figure 4 Minimum observed and estimated output signals.
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