2,929 research outputs found

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice

    CAD Adjacency Computation Using Validated Numerics

    Full text link
    We present an algorithm for computation of cell adjacencies for well-based cylindrical algebraic decomposition. Cell adjacency information can be used to compute topological operations e.g. closure, boundary, connected components, and topological properties e.g. homology groups. Other applications include visualization and path planning. Our algorithm determines cell adjacency information using validated numerical methods similar to those used in CAD construction, thus computing CAD with adjacency information in time comparable to that of computing CAD without adjacency information. We report on implementation of the algorithm and present empirical data.Comment: 20 page

    Efficient Solving of Quantified Inequality Constraints over the Real Numbers

    Full text link
    Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are \leq and <<. Solving such constraints is an undecidable problem when allowing function symbols such sin\sin or cos\cos. In the paper we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques

    A Survey of Satisfiability Modulo Theory

    Full text link
    Satisfiability modulo theory (SMT) consists in testing the satisfiability of first-order formulas over linear integer or real arithmetic, or other theories. In this survey, we explain the combination of propositional satisfiability and decision procedures for conjunctions known as DPLL(T), and the alternative "natural domain" approaches. We also cover quantifiers, Craig interpolants, polynomial arithmetic, and how SMT solvers are used in automated software analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest, Romania. 201

    SqFreeEVAL: An (almost) optimal real-root isolation algorithm

    Full text link
    Let f be a univariate polynomial with real coefficients, f in R[X]. Subdivision algorithms based on algebraic techniques (e.g., Sturm or Descartes methods) are widely used for isolating the real roots of f in a given interval. In this paper, we consider a simple subdivision algorithm whose primitives are purely numerical (e.g., function evaluation). The complexity of this algorithm is adaptive because the algorithm makes decisions based on local data. The complexity analysis of adaptive algorithms (and this algorithm in particular) is a new challenge for computer science. In this paper, we compute the size of the subdivision tree for the SqFreeEVAL algorithm. The SqFreeEVAL algorithm is an evaluation-based numerical algorithm which is well-known in several communities. The algorithm itself is simple, but prior attempts to compute its complexity have proven to be quite technical and have yielded sub-optimal results. Our main result is a simple O(d(L+ln d)) bound on the size of the subdivision tree for the SqFreeEVAL algorithm on the benchmark problem of isolating all real roots of an integer polynomial f of degree d and whose coefficients can be written with at most L bits. Our proof uses two amortization-based techniques: First, we use the algebraic amortization technique of the standard Mahler-Davenport root bounds to interpret the integral in terms of d and L. Second, we use a continuous amortization technique based on an integral to bound the size of the subdivision tree. This paper is the first to use the novel analysis technique of continuous amortization to derive state of the art complexity bounds
    corecore