15,460 research outputs found

    Independent sets and non-augmentable paths in generalizations of tournaments

    Get PDF
    AbstractWe study different classes of digraphs, which are generalizations of tournaments, to have the property of possessing a maximal independent set intersecting every non-augmentable path (in particular, every longest path). The classes are the arc-local tournament, quasi-transitive, locally in-semicomplete (out-semicomplete), and semicomplete k-partite digraphs. We present results on strongly internally and finally non-augmentable paths as well as a result that relates the degree of vertices and the length of longest paths. A short survey is included in the introduction

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    Tree Contractions and Evolutionary Trees

    Full text link
    An evolutionary tree is a rooted tree where each internal vertex has at least two children and where the leaves are labeled with distinct symbols representing species. Evolutionary trees are useful for modeling the evolutionary history of species. An agreement subtree of two evolutionary trees is an evolutionary tree which is also a topological subtree of the two given trees. We give an algorithm to determine the largest possible number of leaves in any agreement subtree of two trees T_1 and T_2 with n leaves each. If the maximum degree d of these trees is bounded by a constant, the time complexity is O(n log^2(n)) and is within a log(n) factor of optimal. For general d, this algorithm runs in O(n d^2 log(d) log^2(n)) time or alternatively in O(n d sqrt(d) log^3(n)) time

    Symmetrized models of last passage percolation and non-intersecting lattice paths

    Get PDF
    It has been shown that the last passage time in certain symmetrized models of directed percolation can be written in terms of averages over random matrices from the classical groups U(l)U(l), Sp(2l)Sp(2l) and O(l)O(l). We present a theory of such results based on non-intersecting lattice paths, and integration techniques familiar from the theory of random matrices. Detailed derivations of probabilities relating to two further symmetrizations are also given.Comment: 21 pages, 5 figure
    • …
    corecore