42,475 research outputs found

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications

    Full text link
    Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transformation

    Using a Logic Programming Framework to Control Database Query Dialogues in Natural Language

    Get PDF
    We present a natural language question/answering system to interface the University of Évora databases that uses clarification dialogs in order to clarify user questions. It was developed in an integrated logic programming framework, based on constraint logic programming using the GnuProlog(-cx) language [2,11] and the ISCO framework [1]. The use of this LP framework allows the integration of Prolog-like inference mechanisms with classes and inheritance, constraint solving algorithms and provides the connection with relational databases, such as PostgreSQL. This system focus on the questions’ pragmatic analysis, to handle ambiguity, and on an efficient dialogue mechanism, which is able to place relevant questions to clarify the user intentions in a straightforward manner. Proper Nouns resolution and the pp-attachment problem are also handled. This paper briefly presents this innovative system focusing on its ability to correctly determine the user intention through its dialogue capability

    A Survey of Languages for Specifying Dynamics: A Knowledge Engineering Perspective

    Get PDF
    A number of formal specification languages for knowledge-based systems has been developed. Characteristics for knowledge-based systems are a complex knowledge base and an inference engine which uses this knowledge to solve a given problem. Specification languages for knowledge-based systems have to cover both aspects. They have to provide the means to specify a complex and large amount of knowledge and they have to provide the means to specify the dynamic reasoning behavior of a knowledge-based system. We focus on the second aspect. For this purpose, we survey existing approaches for specifying dynamic behavior in related areas of research. In fact, we have taken approaches for the specification of information systems (Language for Conceptual Modeling and TROLL), approaches for the specification of database updates and logic programming (Transaction Logic and Dynamic Database Logic) and the generic specification framework of abstract state machine

    Deriving Verb Predicates By Clustering Verbs with Arguments

    Full text link
    Hand-built verb clusters such as the widely used Levin classes (Levin, 1993) have proved useful, but have limited coverage. Verb classes automatically induced from corpus data such as those from VerbKB (Wijaya, 2016), on the other hand, can give clusters with much larger coverage, and can be adapted to specific corpora such as Twitter. We present a method for clustering the outputs of VerbKB: verbs with their multiple argument types, e.g. "marry(person, person)", "feel(person, emotion)." We make use of a novel low-dimensional embedding of verbs and their arguments to produce high quality clusters in which the same verb can be in different clusters depending on its argument type. The resulting verb clusters do a better job than hand-built clusters of predicting sarcasm, sentiment, and locus of control in tweets
    corecore