2,726 research outputs found

    Interpreting CNN Knowledge via an Explanatory Graph

    Full text link
    This paper learns a graphical model, namely an explanatory graph, which reveals the knowledge hierarchy hidden inside a pre-trained CNN. Considering that each filter in a conv-layer of a pre-trained CNN usually represents a mixture of object parts, we propose a simple yet efficient method to automatically disentangles different part patterns from each filter, and construct an explanatory graph. In the explanatory graph, each node represents a part pattern, and each edge encodes co-activation relationships and spatial relationships between patterns. More importantly, we learn the explanatory graph for a pre-trained CNN in an unsupervised manner, i.e., without a need of annotating object parts. Experiments show that each graph node consistently represents the same object part through different images. We transfer part patterns in the explanatory graph to the task of part localization, and our method significantly outperforms other approaches.Comment: in AAAI 201

    Examining CNN Representations with respect to Dataset Bias

    Full text link
    Given a pre-trained CNN without any testing samples, this paper proposes a simple yet effective method to diagnose feature representations of the CNN. We aim to discover representation flaws caused by potential dataset bias. More specifically, when the CNN is trained to estimate image attributes, we mine latent relationships between representations of different attributes inside the CNN. Then, we compare the mined attribute relationships with ground-truth attribute relationships to discover the CNN's blind spots and failure modes due to dataset bias. In fact, representation flaws caused by dataset bias cannot be examined by conventional evaluation strategies based on testing images, because testing images may also have a similar bias. Experiments have demonstrated the effectiveness of our method.Comment: in AAAI 201
    • …
    corecore