1,145 research outputs found

    Laboratory requirements for in-situ and remote sensing of suspended material

    Get PDF
    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements

    Submillimeter and Far-Infrared Polarimetric Observations of Magnetic Fields in Star-Forming Regions

    Get PDF
    Observations of star-forming regions by the current and upcoming generation of submillimeter polarimeters will shed new light on the evolution of magnetic fields over the cloud-to-core size scales involved in the early stages of the star formation process. Recent wide-area and high-sensitivity polarization observations have drawn attention to the challenges of modeling magnetic field structure of star forming regions, due to variations in dust polarization properties in the interstellar medium. However, these observations also for the first time provide sufficient information to begin to break the degeneracy between polarization efficiency variations and depolarization due to magnetic field sub-beam structure, and thus to accurately infer magnetic field properties in the star-forming interstellar medium. In this article we discuss submillimeter and far-infrared polarization observations of star-forming regions made with single-dish instruments. We summarize past, present and forthcoming single-dish instrumentation, and discuss techniques which have been developed or proposed to interpret polarization observations, both in order to infer the morphology and strength of the magnetic field, and in order to determine the environments in which dust polarization observations reliably trace the magnetic field. We review recent polarimetric observations of molecular clouds, filaments, and starless and protostellar cores, and discuss how the application of the full range of modern analysis techniques to recent observations will advance our understanding of the role played by the magnetic field in the early stages of star formation.Comment: 29 pages, 12 figures, 1 table, published in Frontiers in Astronomy and Space Sciences. Open-access, available here: https://www.frontiersin.org/articles/10.3389/fspas.2019.00015/ful

    Investigation of radar backscattering from second-year sea ice

    Get PDF
    The scattering properties of second-year ice were studied in an experiment at Mould Bay in April 1983. Radar backscattering measurements were made at frequencies of 5.2, 9.6, 13.6, and 16.6 GHz for vertical polarization, horizontal polarization and cross polarizations, with incidence angles ranging from 15 to 70 deg. The results indicate that the second-year ice scattering characteristics were different from first-year ice and also different from multiyear ice. The fading properties of radar signals were studied and compared with experimental data. The influence of snow cover on sea ice can be evaluated by accounting for the increase in the number of independent samples from snow volume with respect to that for bare ice surface. A technique for calculating the snow depth was established by this principle and a reasonable agreement has been observed. It appears that this is a usable way to measure depth in snow or other snow-like media using radar

    Laboratory requirements for in-situ and remote sensing of suspended material

    Get PDF
    Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements

    A comparison of the ECMWF forecast model with observations over the annual cycle at SHEBA

    Get PDF
    A central objective of the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment was to provide a comprehensive observational test for single-column models of the atmosphere-sea ice-ocean system over the Arctic Ocean. For single-column modeling, one must specify the time-varying tendencies due to horizontal and vertical advection of air through the column. Due to the difficulty of directly measuring these tendencies, it was decided for SHEBA to obtain them from short-range forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) global forecast model, into which SHEBA rawinsonde and surface synoptic observations were routinely assimilated. The quality of these forecasts directly affects the reliability of the derived advective tendencies. In addition, the ECMWF-forecast thermodynamic and cloud fields, and radiative and turbulent fluxes present an illuminating comparison of the SHEBA observations with a state-of-the-art global numerical model. The authors compare SHEBA soundings, cloud and boundary layer observations with the ECMWF model output throughout the SHEBA year. They find that above the boundary layer, the model was faithful to the SHEBA rawinsonde observations and maintained a proper long-term balance between advective and nonadvective tendencies of heat and moisture. This lends credence to use of the ECMWF-predicted advective tendencies for single-column modeling studies. The model-derived cloud properties and precipitation (which were not assimilated from observations) are compared with cloud radar, lidar, microwave radiometer, surface turbulent and radiative measurements, and basic surface meteorology. The model s slab sea-ice model led to large surface temperature errors and insufficient synoptic variability of temperature. The overall height distribution of cloud was fairly well simulated (though somewhat overestimated) in all seasons, as was precipitation. However, the model clouds typically had a much higher ratio of cloud ice to cloud water than suggested by lidar depolarization measurements, and a smaller optical depth, leading to monthly biases of up to 50 W m^(-2) in the monthly surface downwelling longwave and shortwave radiation. Further biases in net radiation were due to the inaccurate model assumption of constant surface albedo. Observed turbulent sensible and latent heat fluxes tended to be small throughout SHEBA. During high-wind periods during the winter, the ECMWF model predicted sustained downward heat fluxes of up to 60 W m^(-2), much higher than observed. A detailed comparison suggests that this error was due to both inadequate resolution of the 31-level model and a deficient parameterization of sea-ice thermodynamics

    A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    Get PDF
    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990)

    Microwave backscattering theory and active remote sensing of the ocean surface

    Get PDF
    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures

    Aerosol Data Sources and Their Roles within PARAGON

    Get PDF
    We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected to be available in the near future. Emphasis must be given to combining remote sensing and in situ active and passive observations and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture, having sufficient detail to address current climate forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal

    Shipboard Lidar as a Tool for Remotely Measuring the Distribution and Bulk Characteristics of Marine Particles

    Get PDF
    Light detection and ranging (lidar) can provide remote estimates of the vertical distribution of optical properties in the ocean, potentially revolutionizing our ability to characterize the spatial structure of upper ocean ecosystems. However, challenges associated with quantifying the relationship between lidar measurements and biogeochemical properties of interest have prevented its adoption for routinely mapping the vertical structure of marine ecosystems. To address this, we developed a shipboard oceanographic lidar that measures attenuation (α) and linear depolarization (δ) at scales identical to those of in-water optical and biogeochemical measurements. The instrument’s ability to resolve the distribution of optical and biogeochemical properties was characterized during a series of field campaigns in the Mid-Atlantic Bight (MAB) and Gulf of Maine (GoM). α resolved vertical and horizontal gradients in absorption and chlorophyll concentration associated with the Chesapeake Bay outflow and distinct water masses in the GoM. δ was related to the particulate backscattering ratio, an optical proxy for particle size and composition, suggesting that δ could provide information on the material properties of marine particles. After initial characterizations, we conducted a 13-day deployment in the GoM and western North Atlantic to sample a mesoscale coccolithophore bloom. Bloom features were mapped at sub-kilometer scales and δ was used to distinguish coccoliths/coccolithophores from non-calcified particles. Finally, a model parameterized with in-water optical measurements from the bloom and laboratory linear depolarization measurements was used to explore the influence of multiple scattering and particle characteristics on measurements of δ. Single scattering measurements of δ exhibited a complex dependency on particle shape, size, and composition that was consistent with scattering calculations for non-spherical particles. Model results suggested that variability in δ was driven predominantly by shifts in particle concentration rather than their bulk characteristics. However, the behavior of δ when backscattering became decoupled from calcite could only be reproduced by including a separate coccolith particle class. Taken as a whole, this work provides new insights into the scattering nature of marine particles and the complex response of the lidar return signal to water column optical properties, and is an important demonstration of the sampling capabilities afforded by shipboard lidar
    • …
    corecore