306 research outputs found

    Implementation of the Combined--Nonlinear Condensation Transformation

    Full text link
    We discuss several applications of the recently proposed combined nonlinear-condensation transformation (CNCT) for the evaluation of slowly convergent, nonalternating series. These include certain statistical distributions which are of importance in linguistics, statistical-mechanics theory, and biophysics (statistical analysis of DNA sequences). We also discuss applications of the transformation in experimental mathematics, and we briefly expand on further applications in theoretical physics. Finally, we discuss a related Mathematica program for the computation of Lerch's transcendent.Comment: 23 pages, 1 table, 1 figure (Comput. Phys. Commun., in press

    Optimal coding and the origins of Zipfian laws

    Full text link
    The problem of compression in standard information theory consists of assigning codes as short as possible to numbers. Here we consider the problem of optimal coding -- under an arbitrary coding scheme -- and show that it predicts Zipf's law of abbreviation, namely a tendency in natural languages for more frequent words to be shorter. We apply this result to investigate optimal coding also under so-called non-singular coding, a scheme where unique segmentation is not warranted but codes stand for a distinct number. Optimal non-singular coding predicts that the length of a word should grow approximately as the logarithm of its frequency rank, which is again consistent with Zipf's law of abbreviation. Optimal non-singular coding in combination with the maximum entropy principle also predicts Zipf's rank-frequency distribution. Furthermore, our findings on optimal non-singular coding challenge common beliefs about random typing. It turns out that random typing is in fact an optimal coding process, in stark contrast with the common assumption that it is detached from cost cutting considerations. Finally, we discuss the implications of optimal coding for the construction of a compact theory of Zipfian laws and other linguistic laws.Comment: in press in the Journal of Quantitative Linguistics; definition of concordant pair corrected, proofs polished, references update

    Zipf's law, Hierarchical Structure, and Shuffling-Cards Model for Urban Development

    Full text link
    A new angle of view is proposed to find the simple rules dominating complex systems and regular patterns behind random phenomena such as cities. Hierarchy of cities reflects the ubiquitous structure frequently observed in the natural world and social institutions. Where there is a hierarchy with cascade structure, there is a rank-size distribution following Zipf's law, and vice versa. The hierarchical structure can be described with a set of exponential functions that are identical in form to Horton-Strahler's laws on rivers and Gutenberg-Richter's laws on earthquake energy. From the exponential models, we can derive four power laws such as Zipf's law indicative of fractals and scaling symmetry. Research on the hierarchy is revealing for us to understand how complex systems are self-organized. A card-shuffling model is built to interpret the relation between Zipf's law and hierarchy of cities. This model can be expanded to explain the general empirical power-law distributions across the individual physical and social sciences, which are hard to be comprehended within the specific scientific domains.Comment: 28 pages, 8 figure

    Relating Turing's Formula and Zipf's Law

    Full text link
    An asymptote is derived from Turing's local reestimation formula for population frequencies, and a local reestimation formula is derived from Zipf's law for the asymptotic behavior of population frequencies. The two are shown to be qualitatively different asymptotically, but nevertheless to be instances of a common class of reestimation-formula-asymptote pairs, in which they constitute the upper and lower bounds of the convergence region of the cumulative of the frequency function, as rank tends to infinity. The results demonstrate that Turing's formula is qualitatively different from the various extensions to Zipf's law, and suggest that it smooths the frequency estimates towards a geometric distribution.Comment: 9 pages, uuencoded, gzipped PostScript; some typos remove

    Complexity vs Energy: Theory of Computation and Theoretical Physics

    Full text link
    This paper is a survey dedicated to the analogy between the notions of {\it complexity} in theoretical computer science and {\it energy} in physics. This analogy is not metaphorical: I describe three precise mathematical contexts, suggested recently, in which mathematics related to (un)computability is inspired by and to a degree reproduces formalisms of statistical physics and quantum field theory.Comment: 23 pages. Talk at the satellite conference to ECM 2012, "QQQ Algebra, Geometry, Information", Tallinn, July 9-12, 201
    • …
    corecore