112 research outputs found

    Interpretable and Steerable Sequence Learning via Prototypes

    Full text link
    One of the major challenges in machine learning nowadays is to provide predictions with not only high accuracy but also user-friendly explanations. Although in recent years we have witnessed increasingly popular use of deep neural networks for sequence modeling, it is still challenging to explain the rationales behind the model outputs, which is essential for building trust and supporting the domain experts to validate, critique and refine the model. We propose ProSeNet, an interpretable and steerable deep sequence model with natural explanations derived from case-based reasoning. The prediction is obtained by comparing the inputs to a few prototypes, which are exemplar cases in the problem domain. For better interpretability, we define several criteria for constructing the prototypes, including simplicity, diversity, and sparsity and propose the learning objective and the optimization procedure. ProSeNet also provides a user-friendly approach to model steering: domain experts without any knowledge on the underlying model or parameters can easily incorporate their intuition and experience by manually refining the prototypes. We conduct experiments on a wide range of real-world applications, including predictive diagnostics for automobiles, ECG, and protein sequence classification and sentiment analysis on texts. The result shows that ProSeNet can achieve accuracy on par with state-of-the-art deep learning models. We also evaluate the interpretability of the results with concrete case studies. Finally, through user study on Amazon Mechanical Turk (MTurk), we demonstrate that the model selects high-quality prototypes which align well with human knowledge and can be interactively refined for better interpretability without loss of performance.Comment: Accepted as a full paper at KDD 2019 on May 8, 201

    What Symptoms and How Long? An Interpretable AI Approach for Depression Detection in Social Media

    Get PDF
    Depression is the most prevalent and serious mental illness, which induces grave financial and societal ramifications. Depression detection is key for early intervention to mitigate those consequences. Such a high-stake decision inherently necessitates interpretability. Although a few depression detection studies attempt to explain the decision, these explanations misalign with the clinical depression diagnosis criterion that is based on depressive symptoms. To fill this gap, we develop a novel Multi-Scale Temporal Prototype Network (MSTPNet). MSTPNet innovatively detects and interprets depressive symptoms as well as how long they last. Extensive empirical analyses show that MSTPNet outperforms state-of-the-art depression detection methods. This result also reveals new symptoms that are unnoted in the survey approach. We further conduct a user study to demonstrate its superiority over the benchmarks in interpretability. This study contributes to IS literature with a novel interpretable deep learning model for depression detection in social media

    Interpretable Sequence Classification Via Prototype Trajectory

    Full text link
    We propose a novel interpretable recurrent neural network (RNN) model, called ProtoryNet, in which we introduce a new concept of prototype trajectories. Motivated by the prototype theory in modern linguistics, ProtoryNet makes a prediction by finding the most similar prototype for each sentence in a text sequence and feeding an RNN backbone with the proximity of each of the sentences to the prototypes. The RNN backbone then captures the temporal pattern of the prototypes, to which we refer as prototype trajectories. The prototype trajectories enable intuitive, fine-grained interpretation of how the model reached to the final prediction, resembling the process of how humans analyze paragraphs. Experiments conducted on multiple public data sets reveal that the proposed method not only is more interpretable but also is more accurate than the current state-of-the-art prototype-based method. Furthermore, we report a survey result indicating that human users find ProtoryNet more intuitive and easier to understand, compared to the other prototype-based methods

    Understanding and Evaluating Policies for Sequential Decision-Making

    Get PDF
    Sequential-decision making is a critical component of many complex systems, such as finance, healthcare, and robotics. The long-term goal of a sequential decision-making process is to optimize the policy under which decisions are made. In safety-critical domains, the search for an optimal policy must be based on observational data, as new decision-making strategies need to be carefully evaluated before they can be tested in practice. In this thesis, we highlight the importance of understanding sequential decision-making at different stages of this procedure. For example, to assess which policies can be evaluated with the available data, we need to understand the policy that actually generated the data. And once we are given a policy to evaluate, we need to understand how it differs from current practice.First, we focus on the evaluation process, where a target policy is evaluated using off-policy data collected under a different so-called behavior policy. This problem, commonly referred to as off-policy evaluation, is often solved with importance sampling (IS) techniques. Despite their popularity, IS-based methods suffer from high variance and are hard to diagnose. To address these issues, we propose estimating the behavior policy using prototype learning. Using the learned prototypes, we describe differences between target and behavior policies, allowing for better assessment of the IS estimates.Next, we take a clinical direction and study the sequential treatment of patients with rheumatoid arthritis (RA). The armamentarium of disease-modifying anti-rheumatic drugs (DMARDs) for RA patients has greatly expanded over the past decades. However, it is still unclear which treatment work best for individual patients. To examine how observational data can be used to evaluate new policies, we describe the most common patterns of DMARDs in a large patient registry from the US. We find that the number of unique patterns is large, indicating a significant variation in clinical practice which can be exploited for evaluation purposes. However, additional assumptions may be required to arrive at statistically sound results

    Robust Text Classification: Analyzing Prototype-Based Networks

    Full text link
    Downstream applications often require text classification models to be accurate, robust, and interpretable. While the accuracy of the stateof-the-art language models approximates human performance, they are not designed to be interpretable and often exhibit a drop in performance on noisy data. The family of PrototypeBased Networks (PBNs) that classify examples based on their similarity to prototypical examples of a class (prototypes) is natively interpretable and shown to be robust to noise, which enabled its wide usage for computer vision tasks. In this paper, we study whether the robustness properties of PBNs transfer to text classification tasks. We design a modular and comprehensive framework for studying PBNs, which includes different backbone architectures, backbone sizes, and objective functions. Our evaluation protocol assesses the robustness of models against character-, word-, and sentence-level perturbations. Our experiments on three benchmarks show that the robustness of PBNs transfers to NLP classification tasks facing realistic perturbations. Moreover, the robustness of PBNs is supported mostly by the objective function that keeps prototypes interpretable, while the robustness superiority of PBNs over vanilla models becomes more salient as datasets get more complex

    ProtoX: Explaining a Reinforcement Learning Agent via Prototyping

    Full text link
    While deep reinforcement learning has proven to be successful in solving control tasks, the "black-box" nature of an agent has received increasing concerns. We propose a prototype-based post-hoc policy explainer, ProtoX, that explains a blackbox agent by prototyping the agent's behaviors into scenarios, each represented by a prototypical state. When learning prototypes, ProtoX considers both visual similarity and scenario similarity. The latter is unique to the reinforcement learning context, since it explains why the same action is taken in visually different states. To teach ProtoX about visual similarity, we pre-train an encoder using contrastive learning via self-supervised learning to recognize states as similar if they occur close together in time and receive the same action from the black-box agent. We then add an isometry layer to allow ProtoX to adapt scenario similarity to the downstream task. ProtoX is trained via imitation learning using behavior cloning, and thus requires no access to the environment or agent. In addition to explanation fidelity, we design different prototype shaping terms in the objective function to encourage better interpretability. We conduct various experiments to test ProtoX. Results show that ProtoX achieved high fidelity to the original black-box agent while providing meaningful and understandable explanations

    PROMINET: Prototype-based Multi-View Network for Interpretable Email Response Prediction

    Full text link
    Email is a widely used tool for business communication, and email marketing has emerged as a cost-effective strategy for enterprises. While previous studies have examined factors affecting email marketing performance, limited research has focused on understanding email response behavior by considering email content and metadata. This study proposes a Prototype-based Multi-view Network (PROMINET) that incorporates semantic and structural information from email data. By utilizing prototype learning, the PROMINET model generates latent exemplars, enabling interpretable email response prediction. The model maps learned semantic and structural exemplars to observed samples in the training data at different levels of granularity, such as document, sentence, or phrase. The approach is evaluated on two real-world email datasets: the Enron corpus and an in-house Email Marketing corpus. Experimental results demonstrate that the PROMINET model outperforms baseline models, achieving a ~3% improvement in F1 score on both datasets. Additionally, the model provides interpretability through prototypes at different granularity levels while maintaining comparable performance to non-interpretable models. The learned prototypes also show potential for generating suggestions to enhance email text editing and improve the likelihood of effective email responses. This research contributes to enhancing sender-receiver communication and customer engagement in email interactions.Comment: Accepted at EMNLP 2023 (industry

    Care for the Mind Amid Chronic Diseases: An Interpretable AI Approach Using IoT

    Full text link
    Health sensing for chronic disease management creates immense benefits for social welfare. Existing health sensing studies primarily focus on the prediction of physical chronic diseases. Depression, a widespread complication of chronic diseases, is however understudied. We draw on the medical literature to support depression prediction using motion sensor data. To connect human expertise in the decision-making, safeguard trust for this high-stake prediction, and ensure algorithm transparency, we develop an interpretable deep learning model: Temporal Prototype Network (TempPNet). TempPNet is built upon the emergent prototype learning models. To accommodate the temporal characteristic of sensor data and the progressive property of depression, TempPNet differs from existing prototype learning models in its capability of capturing the temporal progression of depression. Extensive empirical analyses using real-world motion sensor data show that TempPNet outperforms state-of-the-art benchmarks in depression prediction. Moreover, TempPNet interprets its predictions by visualizing the temporal progression of depression and its corresponding symptoms detected from sensor data. We further conduct a user study to demonstrate its superiority over the benchmarks in interpretability. This study offers an algorithmic solution for impactful social good - collaborative care of chronic diseases and depression in health sensing. Methodologically, it contributes to extant literature with a novel interpretable deep learning model for depression prediction from sensor data. Patients, doctors, and caregivers can deploy our model on mobile devices to monitor patients' depression risks in real-time. Our model's interpretability also allows human experts to participate in the decision-making by reviewing the interpretation of prediction outcomes and making informed interventions.Comment: 39 pages, 12 figure
    • …
    corecore