274 research outputs found

    Path Guiding with Vertex Triplet Distributions

    Get PDF
    Good importance sampling strategies are decisive for the quality and robustness of photorealistic image synthesis with Monte Carlo integration. Path guiding approaches use transport paths sampled by an existing base sampler to build and refine a guiding distribution. This distribution then guides subsequent paths in regions that are otherwise hard to sample. We observe that all terms in the measurement contribution function sampled during path construction depend on at most three consecutive path vertices. We thus propose to build a 9D guiding distribution over vertex triplets that adapts to the full measurement contribution with a 9D Gaussian mixture model (GMM). For incremental path sampling, we query the model for the last two vertices of a path prefix, resulting in a 3D conditional distribution with which we sample the next vertex along the path. To make this approach scalable, we partition the scene with an octree and learn a local GMM for each leaf separately. In a learning phase, we sample paths using the current guiding distribution and collect triplets of path vertices. We resample these triplets online and keep only a fixed-size subset in reservoirs. After each progression, we obtain new GMMs from triplet samples by an initial hard clustering followed by expectation maximization. Since we model 3D vertex positions, our guiding distribution naturally extends to participating media. In addition, the symmetry in the GMM allows us to query it for paths constructed by a light tracer. Therefore our method can guide both a path tracer and light tracer from a jointly learned guiding distribution

    Face recognition with image sets using manifold density divergence

    Full text link
    In many automatic face recognition applications, a set of a person\u27s face images is available rather than a single image. In this paper, we describe a novel method for face recognition using image sets. We propose a flexible, semi-parametric model for learning probability densities confined to highly non-linear but intrinsically low-dimensional manifolds. The model leads to a statistical formulation of the recognition problem in terms of minimizing the divergence between densities estimated on these manifolds. The proposed method is evaluated on a large data set, acquired in realistic imaging conditions with severe illumination variation. Our algorithm is shown to match the best and outperform other state-of-the-art algorithms in the literature, achieving 94% recognition rate on average

    Motion Segmentation Aided Super Resolution Image Reconstruction

    Get PDF
    This dissertation addresses Super Resolution (SR) Image Reconstruction focusing on motion segmentation. The main thrust is Information Complexity guided Gaussian Mixture Models (GMMs) for Statistical Background Modeling. In the process of developing our framework we also focus on two other topics; motion trajectories estimation toward global and local scene change detections and image reconstruction to have high resolution (HR) representations of the moving regions. Such a framework is used for dynamic scene understanding and recognition of individuals and threats with the help of the image sequences recorded with either stationary or non-stationary camera systems. We introduce a new technique called Information Complexity guided Statistical Background Modeling. Thus, we successfully employ GMMs, which are optimal with respect to information complexity criteria. Moving objects are segmented out through background subtraction which utilizes the computed background model. This technique produces superior results to competing background modeling strategies. The state-of-the-art SR Image Reconstruction studies combine the information from a set of unremarkably different low resolution (LR) images of static scene to construct an HR representation. The crucial challenge not handled in these studies is accumulating the corresponding information from highly displaced moving objects. In this aspect, a framework of SR Image Reconstruction of the moving objects with such high level of displacements is developed. Our assumption is that LR images are different from each other due to local motion of the objects and the global motion of the scene imposed by non-stationary imaging system. Contrary to traditional SR approaches, we employed several steps. These steps are; the suppression of the global motion, motion segmentation accompanied by background subtraction to extract moving objects, suppression of the local motion of the segmented out regions, and super-resolving accumulated information coming from moving objects rather than the whole scene. This results in a reliable offline SR Image Reconstruction tool which handles several types of dynamic scene changes, compensates the impacts of camera systems, and provides data redundancy through removing the background. The framework proved to be superior to the state-of-the-art algorithms which put no significant effort toward dynamic scene representation of non-stationary camera systems

    PCA Reduced Gaussian Mixture Models with Applications in Superresolution

    Get PDF
    Despite the rapid development of computational hardware, the treatment of largeand high dimensional data sets is still a challenging problem. This paper providesa twofold contribution to the topic. First, we propose a Gaussian Mixture Model inconjunction with a reduction of the dimensionality of the data in each componentof the model by principal component analysis, called PCA-GMM. To learn the (lowdimensional) parameters of the mixture model we propose an EM algorithm whoseM-step requires the solution of constrained optimization problems. Fortunately,these constrained problems do not depend on the usually large number of samplesand can be solved efficiently by an (inertial) proximal alternating linearized mini-mization algorithm. Second, we apply our PCA-GMM for the superresolution of 2Dand 3D material images based on the approach of Sandeep and Jacob. Numericalresults confirm the moderate influence of the dimensionality reduction on the overallsuperresolution result.Super-résolution d'images multi-échelles en sciences des matériaux avec des attributs géométrique

    Robust dimensionality reduction for human action recognition

    Full text link
    Human action recognition can be approached by combining an action-discriminative feature set with a classifier. However, the dimensionality of typical feature sets joint with that of the time dimension often leads to a curse-of-dimensionality situation. Moreover, the measurement of the feature set is subject to sometime severe errors. This paper presents an approach to human action recognition based on robust dimensionality reduction. The observation probabilities of hidden Markov models (HMM) are modelled by mixtures of probabilistic principal components analyzers and mixtures of t-distribution sub-spaces, and compared with conventional Gaussian mixture models. Experimental results on two datasets show that dimensionality reduction helps improve the classification accuracy and that the heavier-tailed t-distribution can help reduce the impact of outliers generated by segmentation errors. © 2010 Crown Copyright
    • …
    corecore