6,688 research outputs found

    Social personalized e-learning framework

    Get PDF
    This thesis discusses the topic of how to improve adaptive and personalized e-learning in order to provide novel learning experiences. A recent literature review revealed that adaptive and personalized e-learning systems are not widely used. There is a lack of interoperability between adaptive systems and learning management systems, in addition to limited collaborative and social features. First of all, this thesis investigates the interoperability issue via two case studies. The first case study focuses on how to achieve interoperability between adaptive systems and learning management systems using e-learning standards and the second case study focuses on how to augment e-learning standards with adaptive features. Secondly, this thesis proposes a new social framework for personalized e-learning, in order to provide adaptive and personalized e-learning platforms with new social features. This is not just about creating learning content, but also about developing new ways of learning. For instance, in the presented vision, adaptive learning does not refer to individuals only, but also to groups. Furthermore, the boundaries between authors and learners become less distinct in the Web 2.0 context. Finally, a new social personalized prototype is introduced based on the new social framework for personalized e-learning in order to test and evaluate this framework. The implementation and evaluation of the new system were carried out through a number of case studies.EThOS - Electronic Theses Online ServiceUniversity of Warwick. Dept. of Computer ScienceGBUnited Kingdo

    Representing adaptive and adaptable Units of Learning:How to model personalized eLearning in IMS Learning Design

    Get PDF
    Burgos, D., Tattersall, C., & Koper, E. J. R. (2007). Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design. In B. Fernández Manjon, J. M. Sanchez Perez, J. A. Gómez Pulido, M. A. Vega Rodriguez & J. Bravo (Eds.), Computers and Education: E-learning - from theory to practice. Germany: Kluwer.In this chapter we examine how to represent adaptive and adaptable Units of Learning with IMS Learning Design in order to promote automation and interoperability. Based on a literature study, a distinction is drawn between eight types of adaptation that can be classified in three groups: a) the main group, with interfaced-base, learning-flow and content-base; b) interactive problem solving support, adaptive information filtering, adaptive user grouping; and c) adaptive evaluation and changes on-the-fly. Several sources of information are used in adaptation: user, teacher and set of rules. In this paper, we focus on the core group a). Taking the various possible inputs to an eLearning process, we analyze how to model personalized learning scenarios related to these inputs explaining how these can be represented in IMS Learning Design

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning

    Metadata for describing learning scenarios under European Higher Education Area paradigm

    Get PDF
    In this paper we identify the requirements for creating formal descriptions of learning scenarios designed under the European Higher Education Area paradigm, using competences and learning activities as the basic pieces of the learning process, instead of contents and learning resources, pursuing personalization. Classical arrangements of content based courses are no longer enough to describe all the richness of this new learning process, where user profiles, competences and complex hierarchical itineraries need to be properly combined. We study the intersection with the current IMS Learning Design specification and the additional metadata required for describing such learning scenarios. This new approach involves the use of case based learning and collaborative learning in order to acquire and develop competences, following adaptive learning paths in two structured levels

    An evaluation of pedagogically informed parameterised questions for self assessment

    No full text
    Self-assessment is a crucial component of learning. Learners can learn by asking themselves questions and attempting to answer them. However, creating effective questions is time-consuming because it may require considerable resources and the skill of critical thinking. Questions need careful construction to accurately represent the intended learning outcome and the subject matter involved. There are very few systems currently available which generate questions automatically, and these are confined to specific domains. This paper presents a system for automatically generating questions from a competency framework, based on a sound pedagogical and technological approach. This makes it possible to guide learners in developing questions for themselves, and to provide authoring templates which speed the creation of new questions for self-assessment. This novel design and implementation involves an ontological database that represents the intended learning outcome to be assessed across a number of dimensions, including level of cognitive ability and subject matter. The system generates a list of all the questions that are possible from a given learning outcome, which may then be used to test for understanding, and so could determine the degree to which learners actually acquire the desired knowledge. The way in which the system has been designed and evaluated is discussed, along with its educational benefits
    corecore