43,083 research outputs found

    Internet of Things-Specific Challenges for Enterprise Architectures: A Cross-Case Comparison of Explorative Projects from the smartPORT Initiative

    Get PDF
    By implementing new technologies, enterprise architectures and their respective models are subject to change. Current changes of the enterprise architecture are often driven by the IT megatrends. In this paper, we analyze six explorative projects from a logistics company that implemented Internet of Things (IoT) technology. Our analysis focusses on a cross-case comparison of the project specific enterprise architecture (EA) models based on an integrated model. The models and its meta-model were developed in an action design research based project. The results show that in-depth insights into IoT projects and a unified way of modelling support the process of analyzing the current architecture and deriving recommendations for the to-be architecture. Furthermore, we identify and discuss five IoT-specific EA challenges for future integration and roll-out projects and provide preliminary suggestions for overcoming them

    The future of enterprise groupware applications

    Get PDF
    This paper provides a review of groupware technology and products. The purpose of this review is to investigate the appropriateness of current groupware technology as the basis for future enterprise systems and evaluate its role in realising, the currently emerging, Virtual Enterprise model for business organisation. It also identifies in which way current technological phenomena will transform groupware technology and will drive the development of the enterprise systems of the future

    Securing the Participation of Safety-Critical SCADA Systems in the Industrial Internet of Things

    Get PDF
    In the past, industrial control systems were ‘air gapped’ and isolated from more conventional networks. They used specialist protocols, such as Modbus, that are very different from TCP/IP. Individual devices used proprietary operating systems rather than the more familiar Linux or Windows. However, things are changing. There is a move for greater connectivity – for instance so that higher-level enterprise management systems can exchange information that helps optimise production processes. At the same time, industrial systems have been influenced by concepts from the Internet of Things; where the information derived from sensors and actuators in domestic and industrial components can be addressed through network interfaces. This paper identifies a range of cyber security and safety concerns that arise from these developments. The closing sections introduce potential solutions and identify areas for future research

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies

    An Infrastructure for the Dynamic Distribution of Web Applications and Services

    Full text link
    This paper presents the design and implementation of an infrastructure that enables any Web application, regardless of its current state, to be stopped and uninstalled from a particular server, transferred to a new server, then installed, loaded, and resumed, with all these events occurring "on the fly" and totally transparent to clients. Such functionalities allow entire applications to fluidly move from server to server, reducing the overhead required to administer the system, and increasing its performance in a number of ways: (1) Dynamic replication of new instances of applications to several servers to raise throughput for scalability purposes, (2) Moving applications to servers to achieve load balancing or other resource management goals, (3) Caching entire applications on servers located closer to clients.National Science Foundation (9986397
    • 

    corecore