172,125 research outputs found

    Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of Things

    Full text link
    The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but had to rely on peculiar cross-layered designs and offer a minimalistic set of features. In the long run, however, professional use and massive deployment of IoT devices require full-featured, cleanly composed, and flexible network stacks. This paper introduces the networking architecture that turns RIOT into a powerful IoT system, to enable low-power wireless scenarios. RIOT networking offers (i) a modular architecture with generic interfaces for plugging in drivers, protocols, or entire stacks, (ii) support for multiple heterogeneous interfaces and stacks that can concurrently operate, and (iii) GNRC, its cleanly layered, recursively composed default network stack. We contribute an in-depth analysis of the communication performance and resource efficiency of RIOT, both on a micro-benchmarking level as well as by comparing IoT communication across different platforms. Our findings show that, though it is based on significantly different design trade-offs, the networking subsystem of RIOT achieves a performance equivalent to that of Contiki and TinyOS, the two operating systems which pioneered IoT software platforms

    A Middleware for the Internet of Things

    Full text link
    The Internet of Things (IoT) connects everyday objects including a vast array of sensors, actuators, and smart devices, referred to as things to the Internet, in an intelligent and pervasive fashion. This connectivity gives rise to the possibility of using the tracking capabilities of things to impinge on the location privacy of users. Most of the existing management and location privacy protection solutions do not consider the low-cost and low-power requirements of things, or, they do not account for the heterogeneity, scalability, or autonomy of communications supported in the IoT. Moreover, these traditional solutions do not consider the case where a user wishes to control the granularity of the disclosed information based on the context of their use (e.g. based on the time or the current location of the user). To fill this gap, a middleware, referred to as the Internet of Things Management Platform (IoT-MP) is proposed in this paper.Comment: 20 pages, International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.2, March 201

    Realising context-sensitive mobile messaging

    Get PDF
    Mobile technologies aim to assist people as they move from place to place going about their daily work and social routines. Established and very popular mobile technologies include short-text messages and multimedia messages with newer growing technologies including Bluetooth mobile data transfer protocols and mobile web access.Here we present new work which combines all of the above technologies to fulfil some of the predictions for future context aware messaging. We present a context sensitive mobile messaging system which derives context in the form of physical locations through location sensing and the co-location of people through Bluetooth familiarity

    Analysis of the Communication Traffic for Blockchain Synchronization of IoT Devices

    Full text link
    Blockchain is a technology uniquely suited to support massive number of transactions and smart contracts within the Internet of Things (IoT) ecosystem, thanks to the decentralized accounting mechanism. In a blockchain network, the states of the accounts are stored and updated by the validator nodes, interconnected in a peer-to-peer fashion. IoT devices are characterized by relatively low computing capabilities and low power consumption, as well as sporadic and low-bandwidth wireless connectivity. An IoT device connects to one or more validator nodes to observe or modify the state of the accounts. In order to interact with the most recent state of accounts, a device needs to be synchronized with the blockchain copy stored by the validator nodes. In this work, we describe general architectures and synchronization protocols that enable synchronization of the IoT endpoints to the blockchain, with different communication costs and security levels. We model and analytically characterize the traffic generated by the synchronization protocols, and also investigate the power consumption and synchronization trade-off via numerical simulations. To the best of our knowledge, this is the first study that rigorously models the role of wireless connectivity in blockchain-powered IoT systems.Comment: Paper accepted at IEEE International Conference on Communications (ICC) 201

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future
    corecore