579,432 research outputs found

    Genetic algorithms for the scheduling in additive manufacturing

    Get PDF
    [EN] Genetic Algorithms (GAs) are introduced to tackle the packing problem. The scheduling in Additive Manufacturing (AM) is also dealt with to set up a managed market, called “Lonja3D”. This will enable to determine an alternative tool through the combinatorial auctions, wherein the customers will be able to purchase the products at the best prices from the manufacturers. Moreover, the manufacturers will be able to optimize the production capacity and to decrease the operating costs in each case.This research has been partially financed by the project: “Lonja de ImpresiĂłn 3D para la Industria 4.0 y la Empresa Digital (LONJA3D)” funded by the Regional Government of Castile and Leon and the European Regional Development Fund (ERDF, FEDER) with grant VA049P17Castillo-Rivera, S.; De AntĂłn, J.; Del Olmo, R.; Pajares, J.; LĂłpez-Paredes, A. (2020). Genetic algorithms for the scheduling in additive manufacturing. International Journal of Production Management and Engineering. 8(2):59-63. https://doi.org/10.4995/ijpme.2020.12173OJS596382Ahsan, A., Habib, A., Khoda, B. (2015). Resource based process planning for additive manufacturing. Computer-Aided Design, 69, 112-125. https://doi.org/10.1016/j.cad.2015.03.006AraĂșjo, L., Özcan, E., Atkin, J., Baumers, M., Tuck, C., Hague, R. (2015). Toward better build volume packing in additive manufacturing: classification of existing problems and benchmarks. 26th Annual International Solid Freeform Fabrication Symposium - an Additive Manufacturing Conference, 401-410.Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55: 155-162. https://doi.org/10.1016/j.bushor.2011.11.003Canellidis, V., Dedoussis, V., Mantzouratos, N., Sofianopoulou, S. (2006). Preprocessing methodology for optimizing stereolithography apparatus build performance. Computers in Industry, 57, 424-436. https://doi.org/10.1016/j.compind.2006.02.004Chergui, A., Hadj-Hamoub, K., Vignata, F. (2018). Production scheduling and nesting in additive manufacturing. Computers & Industrial Engineering, 126, 292-301. https://doi.org/10.1016/j.cie.2018.09.048Demirel, E., Özelkan, E.C., Lim, C. (2018). Aggregate planning with flexibility requirements profile. International Journal of Production Economics, 202, 45-58. https://doi.org/10.1016/j.ijpe.2018.05.001Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli, R., Todisco, V. (2018). A modified genetic algorithm for time and cost optimization of an additive manufacturing single-machine scheduling. International Journal of Industrial Engineering Computations, 9, 423-438. https://doi.org/10.5267/j.ijiec.2018.1.001Hopper, E., Turton, B. (1997). Application of genetic algorithms to packing problems - A Review. Proceedings of the 2nd Online World Conference on Soft Computing in Engineering Design and Manufacturing, Springer Verlag, London, 279-288. https://doi.org/10.1007/978-1-4471-0427-8_30Ikonen, I., Biles, W.E., Kumar, A., Wissel, J.C., Ragade, R.K. (1997). A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes. ICGA, 591-598.Kim, K.H., Egbelu, P.J. (1999). Scheduling in a production environment with multiple process plans per job. International Journal of Production Research, 37, 2725-2753. https://doi.org/10.1080/002075499190491Lawrynowicz, A. (2011). Genetic algorithms for solving scheduling problems in manufacturing systems. Foundations of Management, 3(2), 7-26. https://doi.org/10.2478/v10238-012-0039-2Li, Q., Kucukkoc, I., Zhang, D. (2017). Production planning in additive manufacturing and 3D printing. Computers and Operations Research, 83, 157-172. https://doi.org/10.1016/j.cor.2017.01.013MiloĆĄević, M., Lukić, D., Đurđev, M., Vukman, J., Antić, A. (2016). Genetic Algorithms in Integrated Process Planning and Scheduling-A State of The Art Review. Proceedings in Manufacturing Systems, 11(2), 83-88.Pour, M.A., Zanardini, M., Bacchetti, A., Zanoni, S. (2016). Additive manufacturing impacts on productions and logistics systems. IFAC, 49(12), 1679-1684. https://doi.org/10.1016/j.ifacol.2016.07.822Wilhelm, W.E., Shin, H.M. (1985). Effectiveness of Alternate Operations in a Flexible Manufacturing System. International Journal of Production Research, 23(1), 65-79. https://doi.org/10.1080/00207548508904691Xirouchakis, P., Kiritsis, D., Persson, J.G. (1998). A Petri net Technique for Process Planning Cost Estimation. Annals of the CIRP, 47(1), 427-430. https://doi.org/10.1016/S0007-8506(07)62867-4Zhang, Y., Bernard, A., Gupta, R.K., Harik, R. (2014). Evaluating the design for additive manufacturing: a process planning perspective. Procedia CIRP, 21, 144-150. https://doi.org/10.1016/j.procir.2014.03.17

    Factors Affecting Teacher Readiness for Online Learning (TROL) in Early Childhood Education: TISE and TPACK

    Get PDF
    This study aims to find empirical information about the effect of Technological Pedagogical Content Knowledge (TPACK), and Technology Integration Self Efficacy (TISE) on Teacher Readiness for Online Learning (TROL). This study uses a quantitative survey method with path analysis techniques. This study measures the readiness of kindergarten teachers in distance learning in Tanah Datar Regency, West Sumatra Province, Indonesia with a sampling technique using simple random sampling involving 105 teachers. Empirical findings reveal that; 1) there is a direct positive effect of Technology Integration Self Efficacy on Teacher Readiness for Online Learning; 2) there is a direct positive effect of PACK on Teacher Readiness for Online Learning; 3) there is a direct positive effect of Technology Integration Self Efficacy on TPACK. If want to improve teacher readiness for online learning, Technological Pedagogical Content Knowledge (TPACK) must be improved by paying attention to Technology Integration Self Efficacy (TISE). Keywords: TROL, TPACK, TISE, Early Childhood Education References: Abbitt, J. T. (2011). An Investigation of the Relationship between Self-Efficacy Beliefs about Technology Integration and Technological Pedagogical Content Knowledge (TPACK) among Preservice Teachers. Journal of Digital Learning in Teacher Education, 27(4), 134–143. Adedoyin, O. B., & Soykan, E. (2020). Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments, 1–13. https://doi.org/10.1080/10494820.2020.1813180 Adnan, M. (2020). Online learning amid the COVID-19 pandemic: Students perspectives. Journal of Pedagogical Sociology and Psychology, 1(2), 45–51. https://doi.org/10.33902/JPSP.2020261309 Alqurashi, E. (2016). Self-Efficacy in Online Learning Environments: A Literature Review. Contemporary Issues in Education Research (CIER), 9(1), 45–52. https://doi.org/10.19030/cier.v9i1.9549 Amir, H. (2016). Korelasi Pengaruh Faktor Efikasi Diri Dan Manajemen Diri Terhadap Motivasi Berprestasi Pada Mahasiswa Pendidikan Kimia Unversitas Bengkulu. Manajer Pendidikan, 10(4). Anderson, T. (2008). The theory and practice of online learning. Athabasca University Press. Anggraeni, N., Ridlo, S., & Setiati, N. (2018). The Relationship Between TISE and TPACK among Prospective Biology Teachers of UNNES. Journal of Biology Education, 7(3), 305–311. https://doi.org/10.15294/jbe.v7i3.26021 Ariani, D. N. (2015). Hubungan antara Technological Pedagogical Content Knowledge dengan Technology Integration Self Efficacy Guru Matematika di Sekolah Dasar. Muallimuna: Jurnal Madrasah Ibtidaiyah, 1(1), 79–91. Birisci, S., & Kul, E. (2019). Predictors of Technology Integration Self-Efficacy Beliefs of Preservice Teachers. Contemporary Educational Technology, 10(1). https://doi.org/10.30935/cet.512537 Bozkurt, A., Jung, I., Xiao, J., Vladimirschi, V., Schuwer, R., Egorov, G., Lambert, S. R., Al-freih, M., Pete, J., Olcott, D., Rodes, V., Aranciaga, I., Bali, M., Alvarez, A. V, Roberts, J., Pazurek, A., Raffaghelli, J. E., Panagiotou, N., CoĂ«tlogon, P. De, 
 Paskevicius, M. (2020). UVicSPACE: Research & Learning Repository Navigating in a time of uncertainty and crisis. Asian Journal of Distance Education, 15(1), 1–126. Brinkley-Etzkorn, K. E. (2018). Learning to teach online: Measuring the influence of faculty development training on teaching effectiveness through a TPACK lens. The Internet and Higher Education, 38, 28–35. https://doi.org/10.1016/j.iheduc.2018.04.004 Butnaru, G. I., Niță, V., Anichiti, A., & BrĂźnză, G. (2021). The effectiveness of online education during covid 19 pandemic—A comparative analysis between the perceptions of academic students and high school students from romania. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13095311 Carliner, S. (2003). Modeling information for three-dimensional space: Lessons learned from museum exhibit design. Technical Communication, 50(4), 554–570. Cengiz, C. (2015). The development of TPACK, Technology Integrated Self-Efficacy and Instructional Technology Outcome Expectations of pre-service physical education teachers. Asia-Pacific Journal of Teacher Education, 43(5), 411–422. https://doi.org/10.1080/1359866X.2014.932332 Chou, P., & Ph, D. (2012). Effect of Students ’ Self -Directed Learning Abilities on Online Learning Outcomes: Two Exploratory Experiments in Electronic Engineering Department of Education. 2(6), 172–179. Crawford, J., Butler-Henderson, K., Rudolph, J., Malkawi, B., Burton, R., Glowatz, M., Magni, P. A., & Lam, S. (2020). COVID-19: 20 countries’ higher education intra-period digital pedagogy responses. Journal of Applied Learning & Teaching, 3(1). https://doi.org/10.37074/jalt.2020.3.1.7 Dolighan, T., & Owen, M. (2021). Teacher efficacy for online teaching during the COVID-19 pandemic. Brock Education Journal, 30(1), 95. https://doi.org/10.26522/brocked.v30i1.851 Dong, Y., Chai, C. S., Sang, G.-Y., Koh, J. H. L., & Tsai, C.-C. (2015). Exploring the Profiles and Interplays of Pre-service and In-service Teachers’ Technological Pedagogical Content Knowledge (TPACK) in China. International Forum of Educational Technology & Society, 18(1), 158–169. Donitsa-Schmidt, S., & Ramot, R. (2020). Opportunities and challenges: Teacher education in Israel in the Covid-19 pandemic. Journal of Education for Teaching, 46(4), 586–595. https://doi.org/10.1080/02607476.2020.1799708 Elas, N. I. B., Majid, F. B. A., & Narasuman, S. A. (2019). Development of Technological Pedagogical Content Knowledge (TPACK) For English Teachers: The Validity and Reliability. International Journal of Emerging Technologies in Learning (IJET), 14(20), 18. https://doi.org/10.3991/ijet.v14i20.11456 Ghozali, I. (2011). Aplikasi multivariate dengan program IBM SPSS 19. Badan Penerbit Universitas Diponegoro. Giles, R. M., & Kent, A. M. (2016). An Investigation of Preservice Teachers ’ Self-Efficacy for Teaching with Technology. 1(1), 32–40. https://doi.org/10.20849/aes.v1i1.19 Gil-flores, J., & RodrĂ­guez-santero, J. (2017). Computers in Human Behavior Factors that explain the use of ICT in secondary-education classrooms: The role of teacher characteristics and school infrastructure. Computers in Human Behavior, 68, 441–449. https://doi.org/10.1016/j.chb.2016.11.057 Habibi, A., Yusop, F. D., & Razak, R. A. (2019). The role of TPACK in affecting pre-service language teachers’ ICT integration during teaching practices: Indonesian context. Education and Information Technologies. https://doi.org/10.1007/s10639-019-10040-2 Harris, J. B., & Hofer, M. J. (2011). Technological Pedagogical Content Knowledge (TPACK) in Action. Journal of Research on Technology in Education, 43(3), 211–229. https://doi.org/10.1080/15391523.2011.10782570 Hatlevik, I. K. R., & Hatlevik, O. E. (2018). Examining the relationship between teachers’ ICT self-efficacy for educational purposes, collegial collaboration, lack of facilitation and the use of ICT in teaching practice. Frontiers in Psychology, 9(JUN), 1–8. https://doi.org/10.3389/fpsyg.2018.00935 Hung, M. L. (2016). Teacher readiness for online learning: Scale development and teacher perceptions. Computers and Education, 94, 120–133. https://doi.org/10.1016/j.compedu.2015.11.012 Hung, M. L., Chou, C., Chen, C. H., & Own, Z. Y. (2010). Learner readiness for online learning: Scale development and student perceptions. Computers and Education, 55(3), 1080–1090. https://doi.org/10.1016/j.compedu.2010.05.004 Juanda, A., Shidiq, A. S., & Nasrudin, D. (2021). Teacher Learning Management: Investigating Biology Teachers’ TPACK to Conduct Learning During the Covid-19 Outbreak. Jurnal Pendidikan IPA Indonesia, 10(1), 48–59. https://doi.org/10.15294/jpii.v10i1.26499 Karatas, M. A.-K. (2020). COVID - 19 Pandemisinin Toplum Psikolojisine Etkileri ve Eğitime Yansımaları. Journal of Turkish Studies, Volume 15(Volume 15 Issue 4), 1–13. https://doi.org/10.7827/TurkishStudies.44336 Kaymak, Z. D., & Horzum, M. B. (2013). Relationship between online learning readiness and structure and interaction of online learning students. Kuram ve Uygulamada Egitim Bilimleri, 13(3), 1792–1797. https://doi.org/10.12738/estp.2013.3.1580 Keser, H., Karaoğlan Yılmaz, F. G., & Yılmaz, R. (2015). TPACK Competencies and Technology Integration Self-Efficacy Perceptions of Pre-Service Teachers. Elementary Education Online, 14(4), 1193–1207. https://doi.org/10.17051/io.2015.65067 Kim, J. (2020). Learning and Teaching Online During Covid-19: Experiences of Student Teachers in an Early Childhood Education Practicum. International Journal of Early Childhood, 52(2), 145–158. https://doi.org/10.1007/s13158-020-00272-6 Koehler, M. J., Mishra, P., & Cain, W. (2013). What is Technological Pedagogical Content Knowledge (TPACK)? Journal of Education, 193(3), 13–19. https://doi.org/10.1177/002205741319300303 Lee, Y., & Lee, J. (2014). Enhancing pre-service teachers’ self-efficacy beliefs for technology integration through lesson planning practice. Computers and Education, 73, 121–128. https://doi.org/10.1016/j.compedu.2014.01.001 Mallillin, L. L. D., Mendoza, L. C., Mallillin, J. B., Felix, R. C., & Lipayon, I. C. (2020). Implementation and Readiness of Online Learning Pedagogy: A Transition To Covid 19 Pandemic. European Journal of Open Education and E-Learning Studies, 5(2), 71–90. https://doi.org/10.46827/ejoe.v5i2.3321 Mishra, P. (2019). Considering Contextual Knowledge: The TPACK Diagram Gets an Upgrade. Journal of Digital Learning in Teacher Education, 35(2), 76–78. https://doi.org/10.1080/21532974.2019.1588611 Moorhouse, B. L. (2020). Adaptations to a face-to-face initial teacher education course ‘forced’ online due to the COVID-19 pandemic. Journal of Education for Teaching, 46(4), 609–611. https://doi.org/10.1080/02607476.2020.1755205 Mulyadi, D., Wijayatingsih, T. D., Budiastuti, R. E., Ifadah, M., & Aimah, S. (2020). Technological Pedagogical and Content Knowledge of ESP Teachers in Blended Learning Format. International Journal of Emerging Technologies in Learning (IJET), 15(06), 124. https://doi.org/10.3991/ijet.v15i06.11490 Murtaza, G., Mahmood, K., & Fatima, N. (2021). Readiness for Online Learning during COVID-19 pandemic: A survey of Pakistani LIS students The Journal of Academic Librarianship Readiness for Online Learning during COVID-19 pandemic: A survey of Pakistani LIS students. The Journal of Academic Librarianship, 47(3), 102346. https://doi.org/10.1016/j.acalib.2021.102346 Mustika, M., & Sapriya. (2019). Kesiapan Guru IPS dalam E-learning Berdasarkan: Survei melalui Pendekatan TPACK. 32–35. https://doi.org/10.1145/3306500.3306566 Niess, M. L. (2011). Investigating TPACK: Knowledge Growth in Teaching with Technology. Journal of Educational Computing Research, 44(3), 299–317. https://doi.org/10.2190/EC.44.3.c Oketch, & Otchieng, H. (2013). University of Nairobi, H. A. (2013). E-Learning Readiness Assessment Model in Kenyas’ Higher Education Institutions: A Case Study of University of Nairobi by: Oketch, Hada Achieng a Research Project Submitted in Partial Fulfillment of the Requirement of M. October. Pamuk, S., Ergun, M., Cakir, R., Yilmaz, H. B., & Ayas, C. (2015). Exploring relationships among TPACK components and development of the TPACK instrument. Education and Information Technologies, 20(2), 241–263. https://doi.org/10.1007/s10639-013-9278-4 Paraskeva, F., Bouta, H., & Papagianni, A. (2008). Individual characteristics and computer self-efficacy in secondary education teachers to integrate technology in educational practice. Computers and Education, 50(3), 1084–1091. https://doi.org/10.1016/j.compedu.2006.10.006 Putro, S. T., Widyastuti, M., & Hastuti, H. (2020). Problematika Pembelajaran di Era Pandemi COVID-19 Stud Kasus: Indonesia, Filipina, Nigeria, Ethiopia, Finlandia, dan Jerman. Geomedia Majalah Ilmiah Dan Informasi Kegeografian, 18(2), 50–64. Qudsiya, R., Widiyaningrum, P., & Setiati, N. (2018). The Relationship Between TISE and TPACK among Prospective Biology Teachers of UNNES. Journal of Biology Education, 7(3), 305–311. https://doi.org/10.15294/jbe.v7i3.26021 Reflianto, & Syamsuar. (2018). Pendidikan dan Tantangan Pembelajaran Berbasis Teknologi Informasi di Era Revolusi Industri 4.0. Jurnal Ilmiah Teknologi Pendidikan, 6(2), 1–13. Reski, A., & Sari, K. (2020). Analisis Kemampuan TPACK Guru Fisika Se-Distrik Merauke. Jurnla Kreatif Online, 8(1), 1–8. Ruggiero, D., & Mong, C. J. (2015). The teacher technology integration experience: Practice and reflection in the classroom. Journal of Information Technology Education, 14. Santika, V., Indriayu, M., & Sangka, K. B. (2021). Profil TPACK Guru Ekonomi di Indonesia sebagai Pendekatan Integrasi TIK selama Pembelajaran Jarak Jauh pada Masa Pandemi Covid-19. Duconomics Sci-Meet (Education & Economics Science Meet), 1, 356–369. https://doi.org/10.37010/duconomics.v1.5470 Semiz, K., & Ince, M. L. (2012). Pre-service physical education teachers’ technological pedagogical content knowledge, technology integration self-efficacy and instructional technology outcome expectations. Australasian Journal of Educational Technology, 28(7). https://doi.org/10.14742/ajet.800 Senthilkumar, Sivapragasam, & Senthamaraikannan. (2014). Role of ICT in Teaching Biology. International Journal of Research, 1(9), 780–788. Setiaji, B., & Dinata, P. A. C. (2020). Analisis kesiapan mahasiswa jurusan pendidikan fisika menggunakan e-learning dalam situasi pandemi Covid-19 Analysis of e-learning readiness on physics education students during Covid-19 pandemic. 6(1), 59–70. Siagian, H. S., Ritonga, T., & Lubis, R. (2021). Analisis Kesiapan Belajar Daring Siswa Kelas Vii Pada Masa Pandemi Covid-19 Di Desa Simpang. JURNAL MathEdu (Mathematic Education Journal), 4(2), 194–201. Sintawati, M., & Indriani, F. (2019). Pentingnya Technological Pedagogical Content Knowledge (TPACK) Guru di Era Revolusi Industri 4.0. Seminar Nasional Pagelaran Pendidikan Dasar Nasional (PPDN), 1(1), 417–422. Sojanah, J., Suwatno, Kodri, & Machmud, A. (2021). Factors affecting teachers’ technological pedagogical and content knowledge (A survey on economics teacher knowledge). Cakrawala Pendidikan, 40(1), 1–16. https://doi.org/10.21831/cp.v40i1.31035 Subhan, M. (2020). Analisis Penerapan Technological Pedagogical Content Knowledge Pada Proses Pembelajaran Kurikulum 2013 di Kelas V. International Journal of Technology Vocational Education and Training, 1(2), 174–179. Sum, T. A., & Taran, E. G. M. (2020). Kompetensi Pedagogik Guru PAUD dalam Perencanaan dan Pelaksanaan Pembelajaran. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 4(2), 543. https://doi.org/10.31004/obsesi.v4i2.287 Suryawati, E., Firdaus, L. N., & Yosua, H. (2014). Analisis keterampilan technological pedagogical content knowledge (TPCK) guru biologi SMA negeri kota Pekanbaru. Jurnal Biogenesis, 11(1), 67-72. Suyamto, J., Masykuri, M., & Sarwanto, S. (2020). Analisis Kemampuan Tpack (Technolgical, Pedagogical, and Content, Knowledge) Guru Biologi Sma Dalam Menyusun Perangkat Pembelajaran Materi Sistem Peredaran Darah. INKUIRI: Jurnal Pendidikan IPA, 9(1), 46. https://doi.org/10.20961/inkuiri.v9i1.41381 Tiara, D. R., & Pratiwi, E. (2020). Pentingnya Mengukur Kesiapan Guru Sebagai Dasar Pembelajaran Daring. Jurnal Golden Age, 04(2), 362–368. Trionanda, S. (2021). Analisis kesiapan dan pelaksanaan pembelajaran matematika jarak jauh berdasarkan profil TPACK di SD Katolik Tanjungpinang tahun ajaran 2020 / 2021. In Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 6, 69–76. Tsai, C.-C., & Chai, C. S. (2012). The ‘third’-order barrier for technology-integration instruction: Implications for teacher education. Australasian Journal of Educational Technology, 28(6). https://doi.org/10.14742/ajet.810 Wahyuni, F. T. (2019). Hubungan Antara Technological Pedagogical Content Knowledge (Tpack) Dengan Technology Integration Self Efficacy (Tise) Guru Matematika Di Madrasah Ibtidaiyah. Jurnal Pendidikan Matematika (Kudus), 2(2), 109–122. https://doi.org/10.21043/jpm.v2i2.6358 Wang, L., Ertmer, P. A., & Newby, T. J. (2014). Journal of Research on Technology in Education Increasing Preservice Teachers’ Self-Efficacy Beliefs for Technology Integration. Journal of Research on Technology in Education, 36(3), 37–41. https://doi.org/10.1080/15391523.2004.10782414 Warden, C. A., Yi-Shun, W., Stanworth, J. O., & Chen, J. F. (2020). Millennials’ technology readiness and self-efficacy in online classes. Innovations in Education and Teaching International, 00(00), 1–11. https://doi.org/10.1080/14703297.2020.1798269 Widarjono, A. (2015). Analisis Multivariat Terapan edisi kedua. UPP STIM YKPN. Wiresti, R. D. (2021). Analisis Dampak Work from Home pada Anak Usia Dini di Masa Pandemi Covid-19. Jurnal Obsesi: Jurnal Pendidikan Anak Usia Dini, 5(1), 641653. https://doi.org/10.31004/obsesi.v5i1.563 Yildiz Durak, H. (2019). Modeling of relations between K-12 teachers’ TPACK levels and their technology integration self-efficacy, technology literacy levels, attitudes toward technology and usage objectives of social networks. Interactive Learning Environments, 1–27. https://doi.org/10.1080/10494820.2019.1619591 Yudha, F., Aziz, A., & Tohir, M. (2021). Pendampingan Siswa Terdampak Covid-19 Melalui Media Animasi Sebagai Inovasi Pembelajaran Online. JMM (Jurnal Masyarakat Mandiri), 5(3), 964–978. YurdugĂŒl, H., & Demir, Ö. (2017). An investigation of Pre-service Teachers’ Readiness for E-learning at Undergraduate Level Teacher Training Programs: The Case of Hacettepe University. The Case of Hacettepe University. &nbsp

    A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level

    Full text link
    [EN] This paper presents a new methodological process for detecting the instantaneous land-water border at sub-pixel level from mid-resolution satellite images (30 m/pixel) that are freely available worldwide. The new method is based on using an iterative procedure to compute Laplacian roots of a polynomial surface that represents the radiometric response of a set of pixels. The method uses a first approximation of the shoreline at pixel level (initial pixels) and selects a set of neighbouring pixels to be part of the analysis window. This adaptive window collects those stencils in which the maximum radiometric variations are found by using the information given by divided differences. Therefore, the land-water surface is computed by a piecewise interpolating polynomial that models the strong radiometric changes between both interfaces. The assessment is tested on two coastal areas to analyse how their inherent differences may affect the method. A total of 17 Landsat 7 and 8 images (L7 and L8) were used to extract the shorelines and compare them against other highly accurate lines that act as references. Accurate quantitative coastal data from the satellite images is obtained with a mean horizontal error of 4.38 +/- 5.66 m and 1.79 +/- 2.78 m, respectively, for L7 and L8. Prior methodologies to reach the sub-pixel shoreline are analysed and the results verify the solvency of the one proposed.This study is part of the PhD dissertation of E. Sanchez-Garcia, which was supported by a grant from the Spanish Ministry of Education, Culture and Sports (I + D + i 2013-2016). The authors also appreciate the financial support provided by the Spanish Ministry of Economy and Competitiveness (CGL2015-69906-R)SĂĄnchez-GarcĂ­a, E.; Balaguer-Beser, Á.; Almonacid-Caballer, J.; Pardo Pascual, JE. (2019). A New Adaptive Image Interpolation Method to Define the Shoreline at Sub-Pixel Level. Remote Sensing. 11(16):1-28. https://doi.org/10.3390/rs11161880S1281116Szmytkiewicz, M., Biegowski, J., Kaczmarek, L. M., OkrĂłj, T., Ostrowski, R., Pruszak, Z., 
 Skaja, M. (2000). Coastline changes nearby harbour structures: comparative analysis of one-line models versus field data. Coastal Engineering, 40(2), 119-139. doi:10.1016/s0378-3839(00)00008-9FurmaƄczyk, K., Andrzejewski, P., Benedyczak, R., Bugajny, N., CieszyƄski, Ɓ., DudziƄska-Nowak, J., 
 Zawiƛlak, T. (2014). Recording of selected effects and hazards caused by current and expected storm events in the Baltic Sea coastal zone. Journal of Coastal Research, 70, 338-342. doi:10.2112/si70-057.1Deng, J., Harff, J., Zhang, W., Schneider, R., DudziƄska-Nowak, J., Giza, A., 
 FurmaƄczyk, K. (2017). The Dynamic Equilibrium Shore Model for the Reconstruction and Future Projection of Coastal Morphodynamics. Coastal Research Library, 87-106. doi:10.1007/978-3-319-49894-2_6Paprotny, D., Andrzejewski, P., Terefenko, P., & FurmaƄczyk, K. (2014). Application of Empirical Wave Run-Up Formulas to the Polish Baltic Sea Coast. PLoS ONE, 9(8), e105437. doi:10.1371/journal.pone.0105437Roelvink, D., Reniers, A., van Dongeren, A., van Thiel de Vries, J., McCall, R., & Lescinski, J. (2009). Modelling storm impacts on beaches, dunes and barrier islands. Coastal Engineering, 56(11-12), 1133-1152. doi:10.1016/j.coastaleng.2009.08.006Kostrzewski, A., ZwoliƄski, Z., Winowski, M., Tylkowski, J., & SamoƂyk, M. (2015). Cliff top recession rate and cliff hazards for the sea coast of Wolin Island (Southern Baltic). Baltica, 28(2), 109-120. doi:10.5200/baltica.2015.28.10Terefenko, P., Zelaya Wziątek, D., Dalyot, S., Boski, T., & Pinheiro Lima-Filho, F. (2018). A High-Precision LiDAR-Based Method for Surveying and Classifying Coastal Notches. ISPRS International Journal of Geo-Information, 7(8), 295. doi:10.3390/ijgi7080295Terefenko, P., Paprotny, D., Giza, A., Morales-NĂĄpoles, O., Kubicki, A., & Walczakiewicz, S. (2019). Monitoring Cliff Erosion with LiDAR Surveys and Bayesian Network-based Data Analysis. Remote Sensing, 11(7), 843. doi:10.3390/rs11070843Kolander, R., Morche, D., & Bimböse, M. (2013). Quantification of moraine cliff coast erosion on Wolin Island (Baltic Sea, northwest Poland). Baltica, 26(1), 37-44. doi:10.5200/baltica.2013.26.04Moore, L. J., Ruggiero, P., & List, J. H. (2006). Comparing Mean High Water and High Water Line Shorelines: Should Proxy-Datum Offsets be Incorporated into Shoreline Change Analysis? Journal of Coastal Research, 224, 894-905. doi:10.2112/04-0401.1Davidson, M., Van Koningsveld, M., de Kruif, A., Rawson, J., Holman, R., Lamberti, A., 
 Aarninkhof, S. (2007). The CoastView project: Developing video-derived Coastal State Indicators in support of coastal zone management. Coastal Engineering, 54(6-7), 463-475. doi:10.1016/j.coastaleng.2007.01.007Aarninkhof, S. G. ., Turner, I. L., Dronkers, T. D. ., Caljouw, M., & Nipius, L. (2003). A video-based technique for mapping intertidal beach bathymetry. Coastal Engineering, 49(4), 275-289. doi:10.1016/s0378-3839(03)00064-4Andriolo, U., SĂĄnchez-GarcĂ­a, E., & Taborda, R. (2019). Operational Use of Surfcam Online Streaming Images for Coastal Morphodynamic Studies. Remote Sensing, 11(1), 78. doi:10.3390/rs11010078SĂĄnchez-GarcĂ­a, E., Balaguer-Beser, A., & Pardo-Pascual, J. E. (2017). C-Pro: A coastal projector monitoring system using terrestrial photogrammetry with a geometric horizon constraint. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 255-273. doi:10.1016/j.isprsjprs.2017.03.023Holman, R. A., & Stanley, J. (2007). The history and technical capabilities of Argus. Coastal Engineering, 54(6-7), 477-491. doi:10.1016/j.coastaleng.2007.01.003Sagar, S., Roberts, D., Bala, B., & Lymburner, L. (2017). Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sensing of Environment, 195, 153-169. doi:10.1016/j.rse.2017.04.009Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., & Aarninkhof, S. (2018). The State of the World’s Beaches. Scientific Reports, 8(1). doi:10.1038/s41598-018-24630-6Li, J., & Roy, D. (2017). A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sensing, 9(9), 902. doi:10.3390/rs9090902Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688-703. doi:10.2112/03-0071.1Gens, R. (2010). Remote sensing of coastlines: detection, extraction and monitoring. International Journal of Remote Sensing, 31(7), 1819-1836. doi:10.1080/01431160902926673Liu, H., Wang, L., Sherman, D. J., Wu, Q., & Su, H. (2011). Algorithmic Foundation and Software Tools for Extracting Shoreline Features from Remote Sensing Imagery and LiDAR Data. Journal of Geographic Information System, 03(02), 99-119. doi:10.4236/jgis.2011.32007Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-VĂĄzquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. doi:10.1016/j.rse.2012.02.024Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., Palomar-VĂĄzquez, J., & Rodrigo-Alemany, R. (2014). Evaluation of storm impact on sandy beaches of the Gulf of Valencia using Landsat imagery series. Geomorphology, 214, 388-401. doi:10.1016/j.geomorph.2014.02.020Almonacid-Caballer, J., SĂĄnchez-GarcĂ­a, E., Pardo-Pascual, J. E., Balaguer-Beser, A. A., & Palomar-VĂĄzquez, J. (2016). Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Marine Geology, 372, 79-88. doi:10.1016/j.margeo.2015.12.015SĂĄnchez-GarcĂ­a, E., Pardo-Pascual, J. E., Balaguer-Beser, A., & Almonacid-Caballer, J. (2015). ANALYSIS OF THE SHORELINE POSITION EXTRACTED FROM LANDSAT TM AND ETM+ IMAGERY. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W3, 991-998. doi:10.5194/isprsarchives-xl-7-w3-991-2015Pardo-Pascual, J., SĂĄnchez-GarcĂ­a, E., Almonacid-Caballer, J., Palomar-VĂĄzquez, J., Priego de los Santos, E., FernĂĄndez-SarrĂ­a, A., & Balaguer-Beser, Á. (2018). Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sensing, 10(2), 326. doi:10.3390/rs10020326Almonacid-Caballer, J., Pardo-Pascual, J., & Ruiz, L. (2017). Evaluating Fourier Cross-Correlation Sub-Pixel Registration in Landsat Images. Remote Sensing, 9(10), 1051. doi:10.3390/rs9101051Liu, Q., Trinder, J., & Turner, I. (2016). A COMPARISON OF SUB-PIXEL MAPPING METHODS FOR COASTAL AREAS. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III-7, 67-74. doi:10.5194/isprsannals-iii-7-67-2016Liu, Y., Wang, X., Ling, F., Xu, S., & Wang, C. (2017). Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water, 9(11), 816. doi:10.3390/w9110816Liu, Q., Trinder, J., & Turner, I. L. (2017). Automatic super-resolution shoreline change monitoring using Landsat archival data: a case study at Narrabeen–Collaroy Beach, Australia. Journal of Applied Remote Sensing, 11(1), 016036. doi:10.1117/1.jrs.11.016036Cipolletti, M. P., Delrieux, C. A., Perillo, G. M. E., & Cintia Piccolo, M. (2012). Superresolution border segmentation and measurement in remote sensing images. Computers & Geosciences, 40, 87-96. doi:10.1016/j.cageo.2011.07.015Liu, H., & Jezek, K. C. (2004). Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. International Journal of Remote Sensing, 25(5), 937-958. doi:10.1080/0143116031000139890Hermosilla, T., Bermejo, E., Balaguer, A., & Ruiz, L. A. (2008). Non-linear fourth-order image interpolation for subpixel edge detection and localization. Image and Vision Computing, 26(9), 1240-1248. doi:10.1016/j.imavis.2008.02.012Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2), 231-303. doi:10.1016/0021-9991(87)90031-3Shu, C.-W., & Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77(2), 439-471. doi:10.1016/0021-9991(88)90177-5Capilla, M. T., & Balaguer-Beser, A. (2013). A new well-balanced non-oscillatory central scheme for the shallow water equations on rectangular meshes. Journal of Computational and Applied Mathematics, 252, 62-74. doi:10.1016/j.cam.2013.01.014Balaguer, Á., & Conde, C. (2005). Fourth-Order Nonoscillatory Upwind and Central Schemes for Hyperbolic Conservation Laws. SIAM Journal on Numerical Analysis, 43(2), 455-473. doi:10.1137/s0036142903437106Xu, N. (2018). Detecting Coastline Change with All Available Landsat Data over 1986–2015: A Case Study for the State of Texas, USA. Atmosphere, 9(3), 107. doi:10.3390/atmos9030107Balaguer, A., Conde, C., LĂłpez, J. A., & MartĂ­nez, V. (2001). A finite volume method with a modified ENO scheme using a Hermite interpolation to solve advection diffusion equations. International Journal for Numerical Methods in Engineering, 50(10), 2339-2371. doi:10.1002/nme.123Press, W. H., & Teukolsky, S. A. (1990). Savitzky-Golay Smoothing Filters. Computers in Physics, 4(6), 669. doi:10.1063/1.482296

    Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models

    Full text link
    [EN] Access to the small bowel by means of an enteroscope is difficult, even using current devices such as single-balloon or double-balloon enteroscopes. Exploration time and patient discomfort are the main drawbacks. The prototype 'Endoworm' analysed in this paper is based on a pneumatic translation system that, gripping the bowel, enables the endoscope to move forward while the bowel slides back over its most proximal part. The grip capacity is related to the pressure inside the balloon, which depends on the insufflate volume of air. Different materials were used as in vitro and ex vivo models: rigid polymethyl methacrylate, flexible silicone, polyester urethane and ex vivo pig small bowel. On measuring the pressure-volume relationship, we found that it depended on the elastic properties of the lumen and that the frictional force depended on the air pressure inside the balloons and the lumen's elastic properties. In the presence of a lubricant, the grip on the simulated intestinal lumens was drastically reduced, as was the influence of the lumen's properties. This paper focuses on the Endoworm's ability to grip the bowel, which is crucial to achieving effective endoscope forward advance and bowel foldingThe author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The study was funded by the Spanish Ministry of Economy and Competitiveness through Project (PI18/01365) and by the UPV/IIS LA Fe through the (Endoworm 3.0) Project. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with the assistance of the European Regional Development FundTobella, J.; Pons-BeltrĂĄn, V.; Santonja, A.; SĂĄnchez-Diaz, C.; Campillo Fernandez, AJ.; Vidaurre, A. (2020). Analysis of the 'Endoworm' prototype's ability to grip the bowel in in vitro and ex vivo models. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine. 234(5):1-10. https://doi.org/10.1177/09544119209014141102345Iddan, G., Meron, G., Glukhovsky, A., & Swain, P. (2000). Wireless capsule endoscopy. Nature, 405(6785), 417-417. doi:10.1038/35013140Yamamoto, H., Sekine, Y., Sato, Y., Higashizawa, T., Miyata, T., Iino, S., 
 Sugano, K. (2001). Total enteroscopy with a nonsurgical steerable double-balloon method. Gastrointestinal Endoscopy, 53(2), 216-220. doi:10.1067/mge.2001.112181Arnott, I. D. R., & Lo, S. K. (2004). REVIEW: The Clinical Utility of Wireless Capsule Endoscopy. Digestive Diseases and Sciences, 49(6), 893-901. doi:10.1023/b:ddas.0000034545.58486.e6Hosoe, N., Takabayashi, K., Ogata, H., & Kanai, T. (2019). Capsule endoscopy for small‐intestinal disorders: Current status. Digestive Endoscopy, 31(5), 498-507. doi:10.1111/den.13346Fukumoto, A., Tanaka, S., Shishido, T., Takemura, Y., Oka, S., & Chayama, K. (2009). Comparison of detectability of small-bowel lesions between capsule endoscopy and double-balloon endoscopy for patients with suspected small-bowel disease. Gastrointestinal Endoscopy, 69(4), 857-865. doi:10.1016/j.gie.2008.06.007Akerman, P. A., Agrawal, D., Chen, W., Cantero, D., Avila, J., & Pangtay, J. (2009). Spiral enteroscopy: a novel method of enteroscopy by using the Endo-Ease Discovery SB overtube and a pediatric colonoscope. Gastrointestinal Endoscopy, 69(2), 327-332. doi:10.1016/j.gie.2008.07.042Moreels, T. G. (2017). Update in enteroscopy: New devices and new indications. Digestive Endoscopy, 30(2), 174-181. doi:10.1111/den.12920Pasha, S. F. (2012). Diagnostic yield of deep enteroscopy techniques for small-bowel bleeding and tumors. Techniques in Gastrointestinal Endoscopy, 14(2), 100-105. doi:10.1016/j.tgie.2012.02.001Lenz, P., & Domagk, D. (2012). Double- vs. single-balloon vs. spiral enteroscopy. Best Practice & Research Clinical Gastroenterology, 26(3), 303-313. doi:10.1016/j.bpg.2012.01.021Baniya, R., Upadhaya, S., Subedi, S. C., Khan, J., Sharma, P., Mohammed, T. S., 
 Jamil, L. H. (2017). Balloon enteroscopy versus spiral enteroscopy for small-bowel disorders: a systematic review and meta-analysis. Gastrointestinal Endoscopy, 86(6), 997-1005. doi:10.1016/j.gie.2017.06.015Menciassi, A., & Dario, P. (2003). Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1811), 2287-2298. doi:10.1098/rsta.2003.1255Zarrouk, D., Sharf, I., & Shoham, M. (2011). Analysis of Wormlike Robotic Locomotion on Compliant Surfaces. IEEE Transactions on Biomedical Engineering, 58(2), 301-309. doi:10.1109/tbme.2010.2066274Poon, C. C. Y., Leung, B., Chan, C. K. W., Lau, J. Y. W., & Chiu, P. W. Y. (2015). Design of wormlike automated robotic endoscope: dynamic interaction between endoscopic balloon and surrounding tissues. Surgical Endoscopy, 30(2), 772-778. doi:10.1007/s00464-015-4224-8Kassim, I., Phee, L., Ng, W. S., Feng Gong, Dario, P., & Mosse, C. A. (2006). Locomotion techniques for robotic colonoscopy. IEEE Engineering in Medicine and Biology Magazine, 25(3), 49-56. doi:10.1109/memb.2006.1636351Kim, Y.-T., & Kim, D.-E. (2010). Novel Propelling Mechanisms Based on Frictional Interaction for Endoscope Robot. Tribology Transactions, 53(2), 203-211. doi:10.1080/10402000903125337Massalou, D., Masson, C., Foti, P., Afquir, S., BaquĂ©, P., Berdah, S.-V., & BĂšge, T. (2016). Dynamic biomechanical characterization of colon tissue according to anatomical factors. Journal of Biomechanics, 49(16), 3861-3867. doi:10.1016/j.jbiomech.2016.10.023Egorov, V. I., Schastlivtsev, I. V., Prut, E. V., Baranov, A. O., & Turusov, R. A. (2002). Mechanical properties of the human gastrointestinal tract. Journal of Biomechanics, 35(10), 1417-1425. doi:10.1016/s0021-9290(02)00084-2Hoeg, H. D., Slatkin, A. B., Burdick, J. W., & Grundfest, W. S. (s. f.). Biomechanical modeling of the small intestine as required for the design and operation of a robotic endoscope. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). doi:10.1109/robot.2000.844825Terry, B. S., Passernig, A. C., Hill, M. L., Schoen, J. A., & Rentschler, M. E. (2012). Small intestine mucosal adhesivity to in vivo capsule robot materials. Journal of the Mechanical Behavior of Biomedical Materials, 15, 24-32. doi:10.1016/j.jmbbm.2012.06.018Kim, J.-S., Sung, I.-H., Kim, Y.-T., Kwon, E.-Y., Kim, D.-E., & Jang, Y. H. (2006). Experimental investigation of frictional and viscoelastic properties of intestine for microendoscope application. Tribology Letters, 22(2), 143-149. doi:10.1007/s11249-006-9073-0Lyle, A. B., Luftig, J. T., & Rentschler, M. E. (2013). A tribological investigation of the small bowel lumen surface. Tribology International, 62, 171-176. doi:10.1016/j.triboint.2012.11.018De Simone, A., & Luongo, A. (2013). Nonlinear viscoelastic analysis of a cylindrical balloon squeezed between two rigid moving plates. International Journal of Solids and Structures, 50(14-15), 2213-2223. doi:10.1016/j.ijsolstr.2013.03.028Sliker, L. J., Ciuti, G., Rentschler, M. E., & Menciassi, A. (2016). Frictional resistance model for tissue-capsule endoscope sliding contact in the gastrointestinal tract. Tribology International, 102, 472-484. doi:10.1016/j.triboint.2016.06.003Zhang, C., Liu, H., & Li, H. (2014). Experimental investigation of intestinal frictional resistance in the starting process of the capsule robot. Tribology International, 70, 11-17. doi:10.1016/j.triboint.2013.09.019Zhang, C., Liu, H., & Li, H. (2013). Modeling of Frictional Resistance of a Capsule Robot Moving in the Intestine at a Constant Velocity. Tribology Letters, 53(1), 71-78. doi:10.1007/s11249-013-0244-5Zhang, C., Liu, H., Tan, R., & Li, H. (2012). Modeling of Velocity-dependent Frictional Resistance of a Capsule Robot Inside an Intestine. Tribology Letters, 47(2), 295-301. doi:10.1007/s11249-012-9980-1Woo, S. H., Kim, T. W., Mohy-Ud-Din, Z., Park, I. Y., & Cho, J.-H. (2011). Small intestinal model for electrically propelled capsule endoscopy. BioMedical Engineering OnLine, 10(1), 108. doi:10.1186/1475-925x-10-108Sliker, L. J., & Rentschler, M. E. (2012). The Design and Characterization of a Testing Platform for Quantitative Evaluation of Tread Performance on Multiple Biological Substrates. IEEE Transactions on Biomedical Engineering, 59(9), 2524-2530. doi:10.1109/tbme.2012.2205688SĂĄnchez-Diaz, C., Senent-Cardona, E., Pons-Beltran, V., Santonja-Gimeno, A., & Vidaurre, A. (2018). Endoworm: A new semi-autonomous enteroscopy device. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(11), 1137-1143. doi:10.1177/0954411918806330Persson, B. N. J., & Spencer, N. D. (1999). Sliding Friction: Physical Principles and Applications. Physics Today, 52(1), 66-68. doi:10.1063/1.882557Gerson, L. B., Flodin, J. T., & Miyabayashi, K. (2008). Balloon-assisted enteroscopy: technology and troubleshooting. Gastrointestinal Endoscopy, 68(6), 1158-1167. doi:10.1016/j.gie.2008.08.012Glozman, D., Hassidov, N., Senesh, M., & Shoham, M. (2010). A Self-Propelled Inflatable Earthworm-Like Endoscope Actuated by Single Supply Line. IEEE Transactions on Biomedical Engineering, 57(6), 1264-1272. doi:10.1109/tbme.2010.2040617Baek, N.-K., Sung, I.-H., & Kim, D.-E. (2004). Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 218(3), 193-201. doi:10.1243/095441104323118914Kwon, J., Cheung, E., Park, S., & Sitti, M. (2006). Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. Biomedical Materials, 1(4), 216-220. doi:10.1088/1748-6041/1/4/007Kim, B., Lee, S., Park, J. H., & Park, J.-O. (2005). Design and Fabrication of a Locomotive Mechanism for Capsule-Type Endoscopes Using Shape Memory Alloys (SMAs). IEEE/ASME Transactions on Mechatronics, 10(1), 77-86. doi:10.1109/tmech.2004.842222Terry, B. S., Lyle, A. B., Schoen, J. A., & Rentschler, M. E. (2011). Preliminary Mechanical Characterization of the Small Bowel for In Vivo Robotic Mobility. Journal of Biomechanical Engineering, 133(9). doi:10.1115/1.400516

    Resolving the productivity paradox of digitalised production

    Full text link
    [EN] Although Industry 4.0 and other initiatives predict widespread adoption of digitalised technology on the factory floor, few companies use new digitalised production technology holistically in their ecosystems; in practical implementation, companies often decide against digitalisation for financial reasons. This is due to a paradox (akin to the so called “productivity paradox”) caused by the complexity of value creation and value delivery within digitalised production. This article analyses and synthesises cross-disciplinary research using a grounded theory model, thus offering valuable insights for businesses considering investing in digitalised production. A qualitative model and an associated toolbox (complete with tools for practical application by business leaders and decision-makers) are presented to address organisational uncertainty and leadership disconnect that often contribute to the paradoxical gap between digital strategy and operational implementation.Dold, L.; Speck, C. (2021). Resolving the productivity paradox of digitalised production. International Journal of Production Management and Engineering. 9(2):65-80. https://doi.org/10.4995/ijpme.2021.15058OJS658092Al-Debei, Mutaz M.; Avison, David (2010): Developing a unified framework of the business model concept. In Euro-pean Journal of Information Systems 19 (3), pp. 359-376. https://doi.org/10.1057/ejis.2010.21Andulkar, Mayur; Le, Duc Tho; Berger, Ulrich (2018): A multi-case study on Industry 4.0 for SME's in Brandenburg, Germany. Proceedings of the 51st Hawaii International Conference on System Sciences. Hawaii, 2018. https://doi.org/10.24251/HICSS.2018.574Arnold, Christian; Kiel, Daniel; Voight, Kai-Ingo (2017): Innovative Business Models for the Industrial Internet of Things. In Berg Huettenmaenn Monatsh 162 (9), pp. 371-381. https://doi.org/10.1007/s00501-017-0667-7Arnold, Christian; Voight, Kai-Ingo (2017): Ecosystem Effects of the Industrial Internet of Things on Manufacturing Companies. In Acta INFOLOGICA 1 (2), pp. 99-108.Berghaus, Sabine (2018): The Fuzzy Front End of Digital Transformation. Activities and Approaches for Initiating Organizational Change Strategies. UniversitĂ€t St. Gallen. Available online at https://www1.unisg.ch/www/edis.nsf/SysLkpByIdentifier/4704/$FILE/dis4704.pdf.Berghaus, Sabine; Back, Andrea; Kaltenrieder, Bramwell. (2017): Digital Maturity & Transformation Report 2017. ZĂŒrich: Crosswalk AG,. In Veröffentlichung zur Studie der UniversitĂ€t St. Gallen in Kooperation mit Crosswalk. St. Gallen, March 2017.Bouwman, Harry; Nikou, Shahrokh; Molina-Castillo, Francisco J.; Reuver, Mark de (2018): The impact of digitaliza-tion on business models. In Digital Policy, Regulation and Governance 20 (2), pp. 105-124. https://doi.org/10.1108/DPRG-07-2017-0039Buchholz, Birgit; Ferdinand, Jan-Peter; Gieschen, Jan-Hinrich; Seidel, Uwe (2017): Digitalisierung industrieller Wertschöpfung. Eine Studie im Rahmen der Begleitforschung zum Technologieprogramm AUTONOMIK fĂŒr In-dustrie 4.0 des Bundesministeriums fĂŒr Wirtschaft und Energie. Berlin: iit-Institut fĂŒr Innovation und Technik der VDI/VDE Innovation + Technik GmbH.BurggrĂ€f, Peter; Dannapfel, Matthias; Voet, Hanno; Bök, Patrick-Benjamin; Uelpenich, JĂ©rĂŽme; Hoppe, Julian (2017): Digital Transformation of Lean Production. Systematic Approach for the Determination of Digitally Pervasive Val-ue Chains. In World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering 11 (10), 2462-2471.Burmeister, Christian; Luettgens, Dirk; Piller, Frank T. (2016): Business Model Innovation for Industrie 4.0. Why the 'Industrial Internet' Mandates a New Perspective. In Die UnternehmensfĂŒhrung ; RWTH-TIM Working Paper 70 (2), pp. 124-152. https://doi.org/10.2139/ssrn.2571033Cañas, HĂ©ctor; Mula, Josefa; DĂ­az-Madroñero, Manuel; Campuzano-BolarĂ­n, Francisco (2021): Implementing Industry 4.0 principles. In Computers & Industrial Engineering 158 (1), p. 107379. https://doi.org/10.1016/j.cie.2021.107379Charmaz, Kathy (2014): Constructing grounded theory. 2nd edition. Los Angeles, London, New Delhi, Singapore, Washington DC: SAGE.Chesbrough, Henry (2010): Business model innovation: opportunities and barriers. Opportunities and Barriers. In Long range planning 43 (2-3), pp. 354-363. https://doi.org/10.1016/j.lrp.2009.07.010Chesbrough, Henry; Rosenbloom, Richard S. (2002): The role of the business model in capturing value from innova-tion: evidence from Xerox Corporation's technology spin‐off companies. In Industrial and corporate change 11 (3), pp. 529-555. https://doi.org/10.1093/icc/11.3.529Cottyn, Johannes; Stockman, Kurt; Hendrik, van Landeghem (2008): The Complementarity of Lean Thinking and the ISA 95 Standard. WBF 2008. WBF. Barcelona, November 2008. Available online at http://hdl.handle.net/1854/LU-524679.Dold, Luzian (2020): Beurteilung von Investitionen in die digitalisierte Produktion. Eine Mixed-Method-Studie zur moderierenden Wirkung von Nutzenkonstrukten aus GeschĂ€ftsmodellen an der LĂŒcke zwischen digitaler Strategie und operativen Prozessen. Dissertation. Middlesex University, London.Dold, Luzian (2021): A Value Centred Paradigm to Moderate the Digital Transformation of Manufacturing. In Adv. J Social Sci. 8 (1), pp. 86-95. DOI: 10.21467/ajss.8.1.86-95.Döring, Nicola; Bortz, JĂŒrgen (2016): Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften. With assistance of Sandra Pöschl. 5. vollstĂ€ndig ĂŒberarbeitete, aktualisierte und erweiterte Auflage. Berlin, Heidel-berg: Springer (Springer-Lehrbuch). https://doi.org/10.1007/978-3-642-41089-5Dorst, Wolfgang (2016): Implementation Strategy Industrie 4.0. Report on the results of the Industrie 4.0 Platform. With assistance of W. Dorst, C. Glohr, T. Hahn, U. Loewen, Rosen, R. Schiemann, T., F. Vollmar et al. Edited by BITKOM e.V., VDMA e.V., ZVEI e.V. Berlin, Frankfurt am Main.Eruvankai, Saju; Muthukrishnan, Murugesan; Mysore, Anantharamaiah Kumar (2017): Accelerating IIOT Adoption with OPC UA. In INTERNETWORKING INDONESIA 9 (1), pp. 3-8. Available online at http://www.internetworkingindonesia.org/Issues/Vol9-No1-2017/iij_vol9_no1_2017_eruvankai.pdf.Fleisch, Elgar; Weinberger, Markus; Wortmann, Ass Felix; Wortmann, Felix (2014): GeschĂ€ftsmodelle im Internet der Dinge. In HMD Praxis der Wirtschaftsinformatik 51 (6), pp. 812-826. https://doi.org/10.1365/s40702-014-0083-3Geissbauer, Reinhard; Schrauf Stefan; Koch Volkmar; Kuge Simon (2014): Industry 4.0 : Opportunities and Challenges of the Industrial Internet. Edited by Pricewaterhousecooper Aktiengesellschaft. MĂŒnchen.Gibbons, Paul M.; Burgess, Stuart C. (2010): Introducing OEE as a measure of lean Six Sigma capability. In Lean Six Sigma Journal 1 (2), pp. 134-156. https://doi.org/10.1108/20401461011049511Grebe, Michael; RĂŒssmann, Michael,Leyh Michael; Franke, Roman (2019): HOW DIGITAL CHAMPIONS INVEST. Edited by Boston Consulting Group. MĂŒnchen. Available online at http://image-src.bcg.com/Images/BCG-How-Digital-Champions-Invest-June-2019_tcm15-223286.pdf, checked on 1/6/2020.GĂŒrdĂŒr, Didem; El-khoury, Jad; Törngren, Martin (2019): Digitalizing Swedish industry. What is next? In Computers in Industry 105 (1), pp. 153-163. https://doi.org/10.1016/j.compind.2018.12.011Henssen, Robert; Schleipen, Miriam (2014): Interoperability between OPC UA and AutomationML. In Procedia CIRP 25, pp. 297-304. https://doi.org/10.1016/j.procir.2014.10.042Hopp, Wallace J.; Spearman, Mark L. (2004): To Pull or Not to Pull. What Is the Question? In Manufacturing & Ser-vice Operations Management 6 (2), pp. 133-148. https://doi.org/10.1287/msom.1030.0028Imtiaz, Jahanzaib; Jasperneite, JĂŒrgen (2013): Scalability of OPC-UA down to the chip level enables "Internet of Things". In IEEE intelligent Systems, pp. 500-505. https://doi.org/10.1109/INDIN.2013.6622935Industrial Value Chain Initiative (2018): Industrial Value Chain Reference Architecture -Next. Strategic implementation framework of industrial value chain for connected industries. Edited by Industrial Value Chain Initiative. Monozu-kuri Nippon Conference c/o. Tokyo.Jesse, Norbert (2016): Internet of Things and Big Data - The Disruption of the Value Chain and the Rise of New Soft-ware Ecosystems. In IFAC-PapersOnLine 49 (29), pp. 275-282. https://doi.org/10.1016/j.ifacol.2016.11.079JĂŒttemann, Gerd (Ed.) (1989): Qualitative Forschung in der Psychologie. Grundfragen, Verfahrensweisen, Anwen-dungsfelder. 2. Aufl. Heidelberg: Asanger.Kagermann, Henning; Anderl, Reiner; Gausemeier, JĂŒrgen; Schuh, GĂŒnther; Wahlster Wolfgang (2016): Industrie 4.0 im globalen Kontext. Strategien der Zusammenarbeit mit internationalen Partnern. Acatech Studie. MĂŒnchen: Her-bert Utz Verlag.Kagermann, Henning; Wahlster, Wolfgang; Helbig, Johannes (2013): Umsetzungsempfehlungen fĂŒr das Zukunftspro-jekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0. Edited by Prof. Dr. Henning Kagermann. For-schungsunion Wirtschaft und Wissenschaft, Arbeitskreis Industrie 4.0. Frankfurt am Main.Kagermann, Henning; Wahlster, Wolfgang; Lukas, Wolf-Dieter (2011): Industrie 4.0 : Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution. In VDI Nachrichten 2011, 4/1/2011 (13).Kiel, Daniel; MĂŒller, Julian; Arnold, Christian; Voight, Kai-Ingo (2017): Sustainable Industrial Value Creation. Benefits and Challenges of Industry 4.0. In International Journal of Innovation Management (ijim) 21 (8), pp. 1-34. https://doi.org/10.1142/S1363919617400151Koch, Arno (2016): OEE fĂŒr das Produktionsteam. Das vollstĂ€ndige OEE-Benutzerhandbuch - oder wie Sie die ver-borgene Maschine entdecken. 3., korrigierte Auflage. Herrieden: CETPM Publishing (Operational Excellence, Nr. 5).Legrenzi, Christopher (2017): THE DIGITAL PARADOX. INFORMATION, INFORMATICS, AND INFOR-MATION SYSTEM. In ISM Journal of International Business, pp. 35-42.Lerch, Christian; JĂ€ger, Angela; Maloca, Spomenka (2017): Wie digital ist Deutschlands Industrie wirklich. Arbeit und ProduktivitĂ€t in der digitalen Produktion. In Mitteilungen aus der ISI-Erhebung Modernisierung der Produktion, Ausgabe 71.Leyh, Christian; Bley, Katja (2016): Digitalisierung. Chance oder Risiko fĂŒr den deutschen Mittelstand? - Eine Studie ausgewĂ€hlter Unternehmen. In HMD 53 (1), pp. 29-41. https://doi.org/10.1365/s40702-015-0197-2Lin, Shi-Wan; Crawford, Mark; Mellor, Stephen (2017): The Industrial Internet of Things Volume G1: Reference Architecture. Version 1.80. Needham, MA. In Industrial Internet Consortium (IIC) Tech. Rep.Magruk, Andrzej (2016): Uncertainty in the Sphere of the Industry 4.0 - Potential Areas to Research. In Business, Management & Education/Verslas, Vadyba ir Studijos 14 (2), pp. 275-291. https://doi.org/10.3846/bme.2016.332Maier, W.; Weber, M. (2013): Management von Big-Data-Projekten. Leitfaden. Berlin: Bundesverband Information-swirtschaft,Telekommunikation und neue Medien e. V.Maklan, Stan; Peppard, Joe; Klaus, Philipp (2015): Show me the money. In European Journal of Marketing 49 (3/4), pp. 561-595. https://doi.org/10.1108/EJM-08-2013-0411Mayring, Philipp (2008): EinfĂŒhrung in die qualititative Sozialforschung. Eine Anleitung zu qualitativem Denken. 5. Aufl. Weinheim, Basel: Beltz (Beltz Studium).Obermaier, Robert (2019): Industrie 4.0 und Digitale Transformation als unternehmerische Gestaltungsaufgabe. In Robert Obermaier (Ed.): Handbuch Industrie 4.0 und Digitale Transformation. Betriebswirtschaftliche, technische und rechtliche Herausforderungen. 1st ed. 2019. Wiesbaden: Springer Fachmedien Wiesbaden, pp. 3-46. https://doi.org/10.1007/978-3-658-24576-4_1Obermaier, Robert; Schweikl, Stefan (2019): Zur Bedeutung von Solows Paradoxon. Empirische Evidenz und ihre Übertragbarkeit auf Digitalisierungsinvestitionen in einer Industrie 4.0. In Robert Obermaier (Ed.): Handbuch In-dustrie 4.0 und Digitale Transformation. Betriebswirtschaftliche, technische und rechtliche Herausforderungen. 1st ed. 2019. Wiesbaden: Springer Fachmedien Wiesbaden, pp. 529-564. https://doi.org/10.1007/978-3-658-24576-4_22Osterwalder, Alexander (2004): The business model ontology: A proposition in a design science approach. Disserti-ation. Universite de Lausanne, Lausanne. Ecole des Hautes Etudes Commerciales. Available online at https://doc.rero.ch/record/4210/files/1_these_Osterwalder.pdf.Osterwalder, Alexander; Pigneur, Yves (2010): Business model generation: a handbook for visionaries, game changers, and challengers. Hoboken: John Wiley & Sons.Palm, Florian; GrĂŒner, Sten; Pfrommer, Julius; Graube, Markus; Urbas, Leon (2014): open62541-der offene OPC UA Stack. In Onlinepublikation des Fraunhofer IOSB, Lehrstuhl Prozessleittechnik der RWTH Aachen; TU Dresden, Professur fĂŒr Prozessleitechnik,Porter, Michael E. (2010): Wettbewerbsvorteile. Spitzenleistungen erreichen und behaupten. 7. durchgesehene Auflage Auflage. Frankfurt, New York: Campus.Porter, Michael E.; Heppelmann, James E. (2014): How smart, connected products are transforming competition. In Harvard business review 92 (11), pp. 64-88.Rachinger, Michael; Rauter, Romana; MĂŒller, Christiana; Vorraber, Wolfgang; Schirgi, Eva (2019): Digitalization and its influence on business model innovation. In Journal of Manufacturing Technology Management 30 (8), pp. 1143-1160. https://doi.org/10.1108/JMTM-01-2018-0020Remane, Gerrit; Hanelt, Andre; Wiesboeck, Florian; Kolbe, Lutz M. (2017): Digital maturity in traditional industries - an exploratory analysis. Twenty-Fifth European Conference on Information Systems (ECIS),. GuimarĂŁes,Portugal, 2017.Rese, Mario; Meier, Horst; Gesing, Judith; Boßlau, Mario (2013): An ontology of business models for industrial prod-uct-service systems. In Yoshiki Shimomura, Koji Kimita (Eds.): The Philosopher's Stone for Sustainability. Pro-ceedings of the 4th CIRP International Conference on Industrial Product-Service Systems, Tokyo, Japan, Novem-ber 8th - 9th, 2012. Heidelberg: Springer (Lecture Notes in Production Engineering), pp. 191-196. https://doi.org/10.1007/978-3-642-32847-3_32Sauer, Olaf (2014): Information Technology for the Factory of the Future - State of the Art and Need for Action. In Procedia CIRP 25, pp. 293-296. https://doi.org/10.1016/j.procir.2014.10.041Schmenner, Roger W. (2015): The Pursuit of Productivity. In Production and Operations Management 24 (2), pp. 341-350. https://doi.org/10.1111/poms.12230Schuh, G.; Anderl, R.; Dumitrescu, R.; Hompel, M. ten; KrĂŒger, A. (Eds.) (2020): Industrie 4.0 Maturity Index. Man-aging the Digital Transformation of Companies - UPDATE 2020 - (acatech STUDY). MUNICH: Herbert Utz Verlag.Schuh, GĂŒnther; Reuter, Christina; Hauptvogel, Annika; Dölle, Christian (2015): Hypotheses for a Theory of Produc-tion in the Context of Industrie 4.0. In : Advances in Production Technology: Springer, pp. 11-23. Available online at https://link.springer.com/10.1007/978-3-319-12304-2_2 https://doi.org/10.1007/978-3-319-12304-2_2Skilton, Mark; Gordon, Penelope; Harding, Chris (2010): Building return on investment from cloud computing. Cloud Business Artifacts Project, Cloud Computing Work Group, The Open Group. Edited by The Open Group. Burling-ton, MA.Solow, R. M. (1987): We'd better watch out. In New York Times Book Review 36.Strauss, Anselm; Corbin, Juliet (2010): Grounded theory. Grundlagen qualitativer Sozialforschung. UnverĂ€nd. Nachdr. der letzten Aufl. Weinheim: Beltz.Tantik, Erdal; Anderl, Reiner (2016): Industrie 4.0. Using Cyber-physical Systems for Value-stream Based Production Evaluation. In Procedia CIRP 57, pp. 207-212. https://doi.org/10.1016/j.procir.2016.11.036Veile, Johannes; Kiel, Daniel; Voight, Kai-Ingo; MĂŒller, Julian Marius (2019): Lessons learned from Industry 4.0 implementation in the German manufacturing industry. In Journal of Manufacturing Technology Management (ahead-of-print). https://doi.org/10.1108/JMTM-08-2018-0270Witzel, Andreas (2000): Das problemzentrierte Interview. In Forum Qualitative Sozialforschung / Forum: Qualitative Social Research 1 (1). https://doi.org/10.1016/j.lrp.2015.04.001YlipÀÀ, Torbjörn; Skoogh, Anders; Bokrantz, Jon; Gopalakrishnan, Maheshwaran (2017): Identification of maintenance improvement potential using OEE assessment. In International Journal of Productivity and Performance Manage-ment 66 (1), pp. 126-143. https://doi.org/10.1108/IJPPM-01-2016-0028Zennaro, Ilenia; Battini, Daria; Sgarbossa, Fabio; Persona, Alessandro; Marchi, Rosario de; van der Wiele, Ton (2018): Micro Downtime - Data Collection, Analysis and Impact on OEE in Bottling Lines The San Benedetto Case Study. In Int J Qual & Reliability Mgmt 17 (9), p. 0. https://doi.org/10.1108/IJQRM-11-2016-0202Zott, Christoph; Amit, Raphael; Massa, Lorenzo (2011): The Business model: Recent Developments and Future Re-search. In Journal of management 37 (4), pp. 1019-1042. https://doi.org/10.1177/0149206311406265Zuehlke, Detlef (2010): SmartFactory-Towards a factory-of-things. In Annual Reviews in Control 34 (1), pp. 129-138. https://doi.org/10.1016/j.arcontrol.2010.02.00
    • 

    corecore