35 research outputs found

    Neural Networks Architecture Evaluation in a Quantum Computer

    Full text link
    In this work, we propose a quantum algorithm to evaluate neural networks architectures named Quantum Neural Network Architecture Evaluation (QNNAE). The proposed algorithm is based on a quantum associative memory and the learning algorithm for artificial neural networks. Unlike conventional algorithms for evaluating neural network architectures, QNNAE does not depend on initialization of weights. The proposed algorithm has a binary output and results in 0 with probability proportional to the performance of the network. And its computational cost is equal to the computational cost to train a neural network

    Characterizing urban landscapes using fuzzy sets

    Get PDF
    Characterizing urban landscapes is important given the present and future projections of global population that favor urban growth. The definition of “urban” on a thematic map has proven to be problematic since urban areas are heterogeneous in terms of land use and land cover. Further, certain urban classes are inherently imprecise due to the difficulty in integrating various social and environmental inputs into a precise definition. Social components often include demographic patterns, transportation, building type and density while ecological components include soils, elevation, hydrology, climate, vegetation and tree cover. In this paper, we adopt a coupled human and natural system (CHANS) integrated scientific framework for characterizing urban landscapes. We implement the framework by adopting a fuzzy sets concept of “urban characterization” since fuzzy sets relate to classes of object with imprecise boundaries in which membership is a matter of degree. For dynamic mapping applications, user-defined classification schemes involving rules combining different social and ecological inputs can lead to a degree of quantification in class labeling varying from “highly urban” to “least urban”. A socio-economic perspective of urban may include threshold values for population and road network density while a more ecological perspective of urban may utilize the ratio of natural versus built area and percent forest cover. Threshold values are defined to derive the fuzzy rules of membership, in each case, and various combinations of rules offer a greater flexibility to characterize the many facets of the urban landscape. We illustrate the flexibility and utility of this fuzzy inference approach called the Fuzzy Urban Index for the Boston Metro region with five inputs and eighteen rules. The resulting classification map shows levels of fuzzy membership ranging from highly urban to least urban or rural in the Boston study region. We validate our approach using two experts assessing accuracy of the resulting fuzzy urban map. We discuss how our approach can be applied in other urban contexts with newly emerging descriptors of urban sustainability, urban ecology and urban metabolism.This research was partially supported by "Boston University Initiative on Cities Early Stage Urban Research Awards 2015-16" (Gopal & Phillips) and the Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. (Boston University Initiative on Cities Early Stage Urban Research Awards; Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University)https://doi.org/10.1016/j.compenvurbsys.2016.02.002Published versio

    Security and risk analysis in the cloud with software defined networking architecture

    Get PDF
    Cloud computing has emerged as the actual trend in business information technology service models, since it provides processing that is both cost-effective and scalable. Enterprise networks are adopting software-defined networking (SDN) for network management flexibility and lower operating costs. Information technology (IT) services for enterprises tend to use both technologies. Yet, the effects of cloud computing and software defined networking on business network security are unclear. This study addresses this crucial issue. In a business network that uses both technologies, we start by looking at security, namely distributed denial-of-service (DDoS) attack defensive methods. SDN technology may help organizations protect against DDoS assaults provided the defensive architecture is structured appropriately. To mitigate DDoS attacks, we offer a highly configurable network monitoring and flexible control framework. We present a dataset shift-resistant graphic model-based attack detection system for the new architecture. The simulation findings demonstrate that our architecture can efficiently meet the security concerns of the new network paradigm and that our attack detection system can report numerous threats using real-world network data

    Symbolic-Connectionist Representational Model for Optimizing Decision Making Behavior in Intelligent Systems

    Get PDF
    Modeling higher order cognitive processes like human decision making come in three representational approaches namely symbolic, connectionist and symbolic-connectionist. Many connectionist neural network models are evolved over the decades for optimizing decision making behaviors and their agents are also in place. There had been attempts to implement symbolic structures within connectionist architectures with distributed representations. Our work was aimed at proposing an enhanced connectionist approach of optimizing the decisions within the framework of a symbolic cognitive model. The action selection module of this framework is forefront in evolving intelligent agents through a variety of soft computing models. As a continous effort, a Connectionist Cognitive Model (CCN) had been evolved by bringing a traditional symbolic cognitive process model proposed by LIDA as an inspiration to a feed forward neural network model for optimizing decion making behaviours in intelligent agents. Significanct progress was observed while comparing its performance with other varients

    Automated university lecture timetable using Heuristic Approach

    Get PDF
    There are different approaches used in automating course timetabling problem in tertiary institution. This paper present a combination of genetic algorithm (GA) and simulated annealing (SA) to have a heuristic approach (HA) for solving course timetabling problem in Federal University Wukari (FUW). The heuristic approach was implemented considering the soft and hard constraints and the survival for the fittest. The period and space complexity was observed. This helps in matching the number of rooms with the number of courses. Keywords: Heuristic approach (HA), Genetic algorithm (GA), Course Timetabling, Space Complexity

    A GPU Simulation for Evolution-Communication P Systems with Energy Having no Antiport Rules

    Get PDF
    Evolution-Communication P system with energy (ECPe systems) is a cell- like variant P system which establishes a dependence between evolution and communi- cation through special objects, called `energy,' produced during evolution and utilized during communication. This paper presents our initial progress and e orts on the im- plementation and simulation of ECPe systems using Graphics Processing Units (GPUs). Our implementation uses matrix representation and operations presented in a previous work. Speci cally, an implementation of computations on ECPe systems without antiport rules is discussed.Junta de Andalucía P08-TIC-04200Ministerio de Ciencia e Innovación TIN2012-3743
    corecore