127 research outputs found

    3GPP Long Term Evolution: Architecture, Protocols and Interfaces

    Get PDF
    The evolution of wireless networks is a continuous phenomenon. Some key trends in this changing process include: reduced latency, increased performance with substantial reduction in costs, and seamless mobility. Long Term Evolution (LTE) is based on an evolved architecture that makes it a candidate of choice for next generation wireless mobile networks. This paper provides an overview of both the core and access networks of LTE. Functional details of the associated protocols and interfaces are also presented

    NFK: a novel fault-tolerant K-mutual exclusion algorithm for mobile and opportunistic ad hoc networks

    Full text link
    [EN] This paper presents a fault-tolerant algorithm ensuring multiple resources sharing in mobile ad hoc networks (MANETs) that is able to handle the known K-mutual exclusion problem in such mobile environments. The proposed algorithm relies on a token-based strategy, and requires information about resources and their use to be carried in routing protocol control messages. This way, our solution avoids any additional exchange of messages. Furthermore, experimental results show that it offers a fast response time. Moreover, we introduce a dual-layer fault-tolerance mechanism that tolerates the faults of several sites at the same time without affecting the well functioning of the system. Simulation results also evidence the high efficiency of our proposal, which achieves reduced overhead and response delay even in the presence of critical situations where multiple simultaneous faults occur.Allaoui, T.; Yagoubi, MB.; Kerrache, CA.; Tavares De Araujo Cesariny Calafate, CM. (2019). NFK: a novel fault-tolerant K-mutual exclusion algorithm for mobile and opportunistic ad hoc networks. International Journal of Information and Communication Technology. 15(2):176-197. https://doi.org/10.1504/IJICT.2019.102479S17619715

    Compression of High-dimensional Data Spaces Using Non-differential Augmented Vector Quantization

    Get PDF
    Most data-intensive applications are confronted with the problems of I/O bottleneck, poor query processing times and space requirements. Database compression alleviates this bottleneck, reduces disk space usage, improves disk access speed, speeds up query response time, reduces overall retrieval time and increases the effective I/O bandwidth. However, random access to individual tuples in a compressed database is very difficult to achieve with most of the available compression techniques. This paper reports a lossless compression technique called non-differential augmented vector quantization. The technique is applicable to a collection of tuples and especially effective for tuples with numerous low to medium cardinality fields. In addition, the technique supports standard database operations, permits very fast random access and atomic decompression of tuples in large collections. The technique maps a database relation into a static bitmap index cached access structure. Consequently, we were able to achieve substantial savings in space by storing each database tuple as a bit value in the computer memory. Important distinguishing characteristics of our technique are that tuples can be compressed and decompressed individually rather than a full page or entire relation at a time. Furthermore, the information needed for tuple compression and decompression can reside in the memory. Possible application domains of this technique include decision support systems, statistical and life databases with low cardinality fields and possibly no text fields

    A Huffman based short message service compression technique using adjacent distance array

    Full text link
    The short message service (SMS) is a wireless medium of transmission that allows you to send brief text messages. Cell phone devices have an uttermost SMS capacity of 1,120 bits in the traditional system. Moreover, the conventional SMS employs seven bits for each character, allowing the highest 160 characters for an SMS text message to be transmitted. This research demonstrated that an SMS message could contain more than 200 characters by representing around five bits each, introducing a data structure, namely, adjacent distance array (ADA) using the Huffman principle. Allowing the concept of lossless data compression technique, the proposed method of the research generates character's codeword utilising the standard Huffman. However, the ADA encodes the message by putting the ASCII value distances of all characters, and decoding performs by avoiding the whole Huffman tree traverse, which is the pivotal contribution of the research to develop an effective SMS compression technique for personal digital assistants (PDAs). The encoding and decoding processes have been discussed and contrasted with the conventional SMS text message system, where our proposed ADA technique performs outstandingly better from every aspect discovered after evaluating all outcomes.Comment: 19 pages, 9 figures, peer reviewed, accepted, in press, Journal articl

    The study of access point outdoor coverage deployment for wireless digital campus network

    Get PDF

    A Risk Management Decision Support System for the Real Estate Industry

    Get PDF
    The purpose of this work is to build a risk management decision support system for the real estate industry. The decision support system would be useful for risk managers interested in real estate investment. The paper identifies the main risk management related decisions that real estate professionals made on a daily basis. Risk management decision models are selected from an extensive literature review. These models are incorporated into a decision support system

    Design and Implementation of an Intelligent Safety and Security System for Vehicles Based on GSM Communication and IoT Network for Real-Time Tracking

    Get PDF
    In recent years, the surge in car theft cases, often linked to illicit activities, has become a growing concern. Simultaneously, countries grappling with oil shortages have shifted towards converting vehicles to run on liquid propane gas, presenting new safety challenges for car owners. This paper introduces a novel integrated intelligent system designed to address the challenges of car theft and safety concerns associated with gas-based vehicles. By seamlessly integrating these concerns into a single system, it aims to achieve significantly improved performance compared to traditional alarm systems. The proposed system consists of three primary parts: the car security subsystem, an Internet of Things (IoT)-based real-time car tracking subsystem, and the car safety subsystem. Utilizing key technologies such as the Arduino Microcontroller, Bluetooth module, vibration sensor, keypad, solenoid lock, GSM module, NodeMCU microcontroller, GPS module, MQ-4 gas sensor, flame sensor, temperature sensor, and Bluetooth module, the system aims to provide a comprehensive solution for the mentioned issues. Furthermore, the vibration sensor plays a crucial role in identifying unauthorized vehicle operations. Its significance lies in detecting the vibrations emanating from the running engine. Concurrently, other modules and sensors are utilized for real-time tracking and enhancing vehicle safety. These measures include safeguarding against incidents like fire outbreaks or gas leaks within the gas container. Finally, after assembling the system, a practical test was conducted, yielding favourable performance results. This paper describes a meaningful step towards improving the protection and safety for the cars, simultaneously addressing the stealing prevention and gas-related accident alleviation
    • …
    corecore