1,097 research outputs found

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    Recent advances in 3D printing of biomaterials.

    Get PDF
    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing

    Layer manufacturing for in vivo devices

    Get PDF
    Traditional in vivo devices fabricated to be used as implantation devices included sutures, plates, pins, screws, and joint replacement implants. Also, akin to developments in regenerative medicine and drug delivery, there has been the pursuit of less conventional in vivo devices that demand complex architecture and composition, such as tissue scaffolds. Commercial means of fabricating traditional devices include machining and moulding processes. Such manufacturing techniques impose considerable lead times and geometrical limitations, and restrict the economic production of customized products. Attempts at the production of non-conventional devices have included particulate leaching, solvent casting, and phase transition. These techniques cannot provide the desired total control over internal architecture and compositional variation, which subsequently restricts the application of these products. Consequently, several parties are investigating the use of freeform layer manufacturing techniques to overcome these difficulties and provide viable in vivo devices of greater functionality. This paper identifies the concepts of rapid manufacturing (RM) and the development of biomanufacturing based on layer manufacturing techniques. Particular emphasis is placed on the development and experimentation of new materials for bio-RM, production techniques based on the layer manufacturing concept, and computer modelling of in vivo devices for RM techniques

    Internal Structure Evaluation of Three-Dimensional Calcium Phosphate Bone Scaffolds: A Micro-Computed Tomographic Study

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66317/1/j.1551-2916.2006.01143.x.pd
    • …
    corecore