16 research outputs found

    Improved Three-Component Decomposition Technique for Forest Parameters Estimation from PolInSAR Image

    Get PDF
    Polarimetric SAR interferometry (PolInSAR) is an efficient remote sensing technique that allows to extract forest heights by means of model-based inversion. Recently, there have been plenty of researches on the retrieval of vegetation parameters by single frequency single baseline PolInSAR, such as the ESPRIT method and three-stage inversion method. However, these methods have several shortcomings which tend to underestimate the forest height due to attenuations of the electromagnetic waves in the ground medium. In order to overcome these shortcomings, an improved three-component decomposition technique using PolInSAR image is proposed in this paper. By means of coherence set and a Newton-Raphson method, the proposed method improves the accuracy of forest height estimation. The proposed algorithm performance is evaluated with simulated data from PolSARProSim software and L-band PolInSAR image pair of Tien-Shan test site which is acquired by the SIR-C/X-SAR system

    A HYBRID METHOD IN VEGETATION HEIGHT ESTIMATION USING POLINSAR IMAGES OF CAMPAIGN BIOSAR

    Get PDF

    Building Characterization Using L-Band Polarimetric Interferometric SAR Data

    Full text link

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Polarimetric Synthetic Aperture Radar

    Get PDF
    This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans

    Polarimetric Synthetic Aperture Radar, Principles and Application

    Get PDF
    Demonstrates the benefits of the usage of fully polarimetric synthetic aperture radar data in applications of Earth remote sensing, with educational and development purposes. Includes numerous up-to-date examples with real data from spaceborne platforms and possibility to use a software to support lecture practicals. Reviews theoretical principles in an intuitive way for each application topic. Covers in depth five application domains (forests, agriculture, cryosphere, urban, and oceans), with reference also to hazard monitorin

    Space Applications Institute Annual Report 1996. EUR 17355

    Get PDF
    corecore