45,069 research outputs found

    Improved Rate-Equivocation Regions for Secure Cooperative Communication

    Full text link
    A simple four node network in which cooperation improves the information-theoretic secrecy is studied. The channel consists of two senders, a receiver, and an eavesdropper. One or both senders transmit confidential messages to the receiver, while the eavesdropper tries to decode the transmitted message. The main result is the derivation of a newly achievable rate-equivocation region that is shown to be larger than a rate-equivocation region derived by Lai and El Gamal for the relay-eavesdropper channel. When the rate of the helping interferer is zero, the new rate-equivocation region reduces to the capacity-equivocation region over the wire-tap channel, hence, the new achievability scheme can be seen as a generalization of a coding scheme proposed by Csiszar and Korner. This result can naturally be combined with a rate-equivocation region given by Tang et al. (for the interference assisted secret communication), yielding an even larger achievable rate-equivocation region.Comment: 18 pages, 5 figure

    Secure Degrees of Freedom for Gaussian Channels with Interference: Structured Codes Outperform Gaussian Signaling

    Full text link
    In this work, we prove that a positive secure degree of freedom is achievable for a large class of Gaussian channels as long as the channel is not degraded and the channel is fully connected. This class includes the MAC wire-tap channel, the 2-user interference channel with confidential messages, the 2-user interference channel with an external eavesdropper. Best known achievable schemes to date for these channels use Gaussian signaling. In this work, we show that structured codes outperform Gaussian random codes at high SNR when channel gains are real numbers.Comment: 6 pages, Submitted to IEEE Globecom, March 200

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication
    • …
    corecore