7 research outputs found

    Interference and Deployment Issues for Cognitive Radio Systems in Shadowing Environments

    Get PDF
    In this paper we describe a model for calculating the aggregate interference encountered by primary receivers in the presence of randomly placed cognitive radios (CRs). We show that incorporating the impact of distance attenuation and lognormal fading on each constituent interferer in the aggregate, leads to a composite interference that cannot be satisfactorily modeled by a lognormal. Using the interference statistics we determine a number of key parameters needed for the deployment of CRs. Examples of these are the exclusion zone radius, needed to protect the primary receiver under different types of fading environments and acceptable interference levels, and the numbers of CRs that can be deployed. We further show that if the CRs have apriori knowledge of the radio environment map (REM), then a much larger number of CRs can be deployed especially in a high density environment. Given REM information, we also look at the CR numbers achieved by two different types of techniques to process the scheduling information.Comment: to be presented at IEEE ICC 2009. This posting is the same as the original one. Only author's list is updated that was unfortunately not correctly mentioned in first versio

    Performance Analysis of Arbitrarily-Shaped Underlay Cognitive Networks: Effects of Secondary User Activity Protocols

    Full text link
    This paper analyzes the performance of the primary and secondary users (SUs) in an arbitrarily-shaped underlay cognitive network. In order to meet the interference threshold requirement for a primary receiver (PU-Rx) at an arbitrary location, we consider different SU activity protocols which limit the number of active SUs. We propose a framework, based on the moment generating function (MGF) of the interference due to a random SU, to analytically compute the outage probability in the primary network, as well as the average number of active SUs in the secondary network. We also propose a cooperation-based SU activity protocol in the underlay cognitive network which includes the existing threshold-based protocol as a special case. We study the average number of active SUs for the different SU activity protocols, subject to a given outage probability constraint at the PU and we employ it as an analytical approach to compare the effect of different SU activity protocols on the performance of the primary and secondary networks.Comment: submitted to possible IEEE Transactions publicatio

    Performance of Cognitive Radio Systems with Imperfect Radio Environment Map Information

    Get PDF
    In this paper we describe the effect of imperfections in the radio environment map (REM) information on the performance of cognitive radio (CR) systems. Via simulations we explore the relationship between the required precision of the REM and various channel/system properties. For example, the degree of spatial correlation in the shadow fading is a key factor as is the interference constraint employed by the primary user. Based on the CR interferers obtained from the simulations, we characterize the temporal behavior of such systems by computing the level crossing rates (LCRs) of the cumulative interference represented by these CRs. This evaluates the effect of short term fluctuations above acceptable interference levels due to the fast fading. We derive analytical formulae for the LCRs in Rayleigh and Rician fast fading conditions. The analytical results are verified by Monte Carlo simulations.Comment: presented at IEEE AusCTW 2009. Journal versions are under preparation. This posting is the same as the original one. Only author's list is updated that was unfortunately not correctly mentioned in the first versio

    A Cognitive Sensing Algorithm for Coexistence Scenario with LTE

    Get PDF
    Increasing demand for high data rate wireless communication motivates the wireless engineers to develop advanced technologies to address such needs. LTE and LTE-Advanced are examples of such wireless technologies, which support high data rate and a large number of users. However, higher data rate communication requires more frequency bandwidth. Recent studies have shown that the inefficient utilization of frequency spectrum is one of the main reasons for the scarcity of frequency bandwidth. Cognitive Radio Network is introduced as a promising solution for this problem. It increases the utilization of bandwidth, by intelligently sensing the channel environment and dynamically providing access to the available resources (frequency bands) for a secondary user. In this thesis, we developed an algorithm for dynamically detecting and anticipating the existence of underutilized resources in LTE system. The algorithm should be a real-time operation, i.e. the decision on availability of a detected resource should be made within a time much less than scheduling update period of LTE. This is the only way that rest of the unused resources becomes usable. For each specific channel assignment, the algorithm requires to start sensing as soon as possible. Therefore, we develop the algorithm in three main steps. The first step is to blindly detect and identify the LTE-Downlink signal using cyclostationarity property of OFDM scheme. The second step is the acquisition of the LTE-Downlink sub-frame timing, which is basically performed by detecting the Primary Synchronization Signal. The third step is to detect unused resources, for the duration of their transmission. This step is using a frequency domain energy detector. By performing the first and second steps, the sub-frame timing and scheduling update instances are known. So basically the algorithm does not require any previous knowledge of the LTE signal. We evaluate the performance of the proposed algorithm with respect to the tolerable amount of interference at the primary user side. Using the proposed algorithm, in average up to 81 % of unused resources can be used by the secondary user

    Stochastic Geometry for Modeling, Analysis and Design of Future Wireless Networks

    No full text
    This thesis focuses on the modeling, analysis and design of future wireless networks with smart devices, i.e., devices with intelligence and ability to communicate with one another with/without the control of base stations (BSs). Using stochastic geometry, we develop realistic yet tractable frameworks to model and analyze the performance of such networks, while incorporating the intelligence features of smart devices. In the first half of the thesis, we develop stochastic geometry tools to study arbitrarily shaped network regions. Current techniques in the literature assume the network regions to be infinite, while practical network regions tend to be arbitrary. Two well-known networks are considered, where devices have the ability to: (i) communicate with others without the control of BSs (i.e., ad-hoc networks), and (ii) opportunistically access spectrum (i.e., cognitive networks). First, we propose a general algorithm to derive the distribution of the distance between the reference node and a random node inside an arbitrarily shaped ad-hoc network region, which helps to compute the outage probability. We then study the impact of boundary effects and show that the outage probability in infinite regions may not be a meaningful bound for arbitrarily shaped regions. By extending the developed techniques, we further analyze the performance of underlay cognitive networks, where different secondary users (SUs) activity protocols are employed to limit the interference at a primary user. Leveraging the information exchange among SUs, we propose a cooperation-based protocol. We show that, in the short-term sensing scenario, this protocol improves the network's performance compared to the existing threshold-based protocol. In the second half of the thesis, we study two recently emerged networks, where devices have the ability to: (i) communicate directly with nearby devices under the control of BSs (i.e., device-to-device (D2D) communication), and (ii) harvest radio frequency energy (i.e., energy harvesting networks). We first analyze the intra-cell interference in a finite cellular region underlaid with D2D communication, by incorporating a mode selection scheme to reduce the interference. We derive the outage probability at the BS and a D2D receiver, and propose a spectrum reuse ratio metric to assess the overall D2D communication performance. We demonstrate that, without impairing the performance at the BS, if the path-loss exponent on cellular link is slightly lower than that on D2D link, the spectrum reuse ratio can have negligible decrease while the average number of successful D2D transmissions increases with the increasing D2D node density. This indicates that an increasing level of D2D communication is beneficial in future networks. Then we study an ad-hoc network with simultaneous wireless information and power transfer in an infinite region, where transmitters are wirelessly charged by power beacons. We formulate the total outage probability in terms of the power and channel outage probabilities. The former incorporates a power activation threshold at transmitters, which is a key practical factor that has been largely ignored in previous work. We show that, although increasing power beacon's density or transmit power is not always beneficial for channel outage probability, it improves the overall network performance
    corecore