3 research outputs found

    Coverage Analysis for Indoor-Outdoor Coexistence for Millimetre-Wave Communication

    Get PDF
    Milimeter-wave (mm-wave) communication, which has already been a part of the fifth generation of mobile communication networks (5G), would result in ultra dense small cell deployments due to its limited coverage characteristics. In such an environment, outdoor base stations (BS) will get closer to the buildings, in which users are covered and served by indoor small cells that in turn degrades the user Quality of Experience (QoE) owing to the increased interference caused by the outdoor BSs. In this paper, indoor coverage analysis is conducted by considering a scenario, which includes a multi-storey building and two identical indoor femtocell and outdoor BS operating at 28 GHz. During the simulations, impacts of the outdoor BS's transmit power and distance to the building on the indoor coverage are investigated. In addition, various material types, namely one layer brick, International Telecommunication Union (ITU) 28 GHz concrete, ITU 28 GHz glass, and ITU 28 GHz wood, for the building walls are tested. Results reveal that dielectric properties of the materials are the key factors in determining the severity of the interference caused by the outdoor BS, paving the way for including the effects of material type in network designing and smart city planning

    Seamless coverage for the next generation wireless communication networks

    Get PDF
    Data demand has exponentially increased due to the rapid growth of wireless and mobile devices traffic in recent years. With the advent of the fifth generation, 5G, and beyond networks, users will be able to take advantage of additional services beyond the capability of current wireless networks while maintaining a highquality experience. The exploitation of millimeter-wave (mm-wave) frequency in 5G promises to meet the demands of future networks with the motto of providing high data rate coverage with low latency to its users, which will allow future networks to function more efficiently. However, while planning a network using mm-wave frequencies, it is important to consider their small coverage footprints and weak penetration resistance. Heterogeneous network planning with the dense deployment of the small cells is one way of overcoming these issues, yet, without proper planning of the integrated network within the same or different frequencies could lead to other problems such as coverage gaps and frequent handovers; due to the natural physics of mm-wave frequencies. Therefore this thesis focuses on bringing ultra-reliable low-latency communication for mm-wave indoor users by increasing the indoor coverage and reducing the frequency of handovers. Towards achieving this thesis’s aim, a detailed literature review of mm-wave coverage is provided in Chapter 2. Moreover, a table that highlights the penetration loss of materials at various frequencies is provided as a result of thorough research in this field, which will be helpful to the researchers investigating this subject. According to our knowledge, this is the first table presenting the most studies that have been conducted in this field. Chapter 3 examines the interference effect of the outdoor base station (BS) inside the building in the context of a heterogeneous network environment. A single building model scenario is created, and the interference analysis is performed to observe the effects of different building materials used as walls. The results reveal the importance of choosing the material type when outdoor BS is close to the building. Moreover, the interference effect of outdoor BS should be minimized when the frequency re-use technique is deployed over very short distances. Chapter 4 presents two-fold contributions, in addition to providing a comprehensive handover study of mm-wave technology. The first study starts with addressing the problem of modelling users’ movement in the indoor environment. Therefore, a user-based indoor mobility prediction via Markov chain with an initial transition matrix is proposed, acquired from Q-learning algorithms. Based on the acquired knowledge of the user’s mobility in the indoor environment, the second contribution of this chapter provides a pre-emptive handover algorithm to provide seamless connection while the user moves within the heterogeneous network. The implementation and evaluation of the proposed algorithm show a reduction in the handover signalling costs by more than 50%, outperforming conventional handover algorithms. Lastly, Chapter 5 contributes to providing robust signal coverage for coverage blind areas and implementing and evaluating the proposed handover algorithm with the intelligent reflective surface. The results show a reduction in the handover signalling costs by more than 33%, outperforming conventional handover algorithms with the pre-emptive handover initiation

    Interference behavior of integrated femto and macrocell environments

    No full text
    Abstract—Femtocells are data access points installed by the subscribers to provide better indoor voice and data coverage and to increase system capacity. The integrated femtocell/macrocell networks offer an efficient way to increase access capacity by improving coverage and quality of service while on the other side the deployment cost for the service provider is kept in extremely low levels. One of the major technical challenges that femtocell networks are facing is their interference behavior when they are placed within macrocells. The study presented in this paper focuses on the impact of integrating femtocells in macrocell networks in terms of adjacent cell interference that the macrocell environment adds to users served by a femto base station and vice versa. To this direction, we have designed and implemented a simulation testbed that estimates the cross-tier interference and the throughput in every point of an integrated femtocell/macrocell Long Term Evolution-Advanced (LTE-A) network. I
    corecore