126 research outputs found

    Effects of 3D Deployments on Interference and SINR in 5G New Radio Systems

    Get PDF
    Lately, the extremely high frequency (EHF) band has become one of the factors enabling fifth-generation (5G) mobile cellular technologies. By offering large bandwidth, New Radio (NR) systems operating in the lower part of EHF band, called millimeter waves (mmWave), may satisfy the extreme requirements of future 5G networks in terms of both data transfer rate and latency at the air interface. The use of highly directional antennas in prospective mmWave-based NR communications systems raises an important question: are conventional two-dimensional (2D) cellular network modeling techniques suitable for 5G NR systems? To address this question, we introduced a novel, three-dimensional framework for evaluating the performance of emerging mmWave band wireless networks. The proposed framework explicitly takes into account the blockage effects of propagating mmWave radiation, the vertical and planar directivities at transceiver antennas, and the randomness of user equipment (UE), base station (BS), and blocker heights. The model allows for different levels of accuracy, encompassing a number of models with different levels of computational complexity as special cases. Although the main metric of interest in this thesis is the signal-to-interference-plus-noise ratio (SINR), the model can be extended to obtain the Shannon rate of the channel under investigation. The proposed model was numerically evaluated in different deployment cases and communication scenarios with a wide range of system parameters. We found that randomness of UE and BS heights and vertical directionality of the mmWave antennas are essential for accurate evaluation of system performance. We also showed that the results of traditional 2D models are too optimistic and greatly overestimate the actual SINR. In contrast, fixed-height models that ignore the impact of height on the probability of exposure to interference are too pessimistic. Furthermore, we evaluated the models that provide the best trade-off between computational complexity and accuracy in specific scenarios and provided recommendations regarding their use for practical assessment of mmWave-based NR systems

    Network Challenges of Novel Sources of Big Data

    Get PDF
    Networks and networking technologies are the key components of Big Data systems. Modern and future wireless sensor networks (WSN) act as one of the major sources of data for Big Data systems. Wireless networking technologies allow to offload the traffic generated by WSNs to the Internet access points for further delivery to the cloud storage systems. In this thesis we concentrate on the detailed analysis of the following two networking aspects of future Big Data systems: (i) efficient data collection algorithms in WSNs and (ii) wireless data delivery to the Internet access points.The performance evaluation and optimization models developed in the thesis are based on the application of probability theory, theory of stochastic processes, Markov chain theory, stochastic and integral geometries and the queuing theory.The introductory part discusses major components of Big Data systems, identify networking aspects as the subject of interest and formulates the tasks for the thesis. Further, different challenges of Big Data systems are presented in detail with several competitive architectures highlighted. After that, we proceed investigating data collection approaches in modern and future WSNs. We back up the possibility of using the proposed techniques by providing the associated performance evaluation results. We also pay attention to the process of collected data delivery to the Internet backbone access point, and demonstrate that the capacity of conventional cellular systems may not be sufficient for a set of WSN applications including both video monitoring at macro-scale and sensor data delivery from the nano/micro scales. Seeking for a wireless technology for data offloading from WSNs, we study millimeter and terahertz bands. We show there that the interference structure and signal propagation are fundamentally different due to the required use of highly directional antennas, human blocking and molecular absorption. Finally, to characterize the process of collected data transmission from a number of WSNs over the millimeter wave or terahertz backhauls we formulate and solve a queuing system with multiple auto correlated inputs and the service distribution corresponding to the transmission time over a wireless channel with hybrid automatic repeat request mechanism taken into account

    Toward End-to-End, Full-Stack 6G Terahertz Networks

    Full text link
    Recent evolutions in semiconductors have brought the terahertz band in the spotlight as an enabler for terabit-per-second communications in 6G networks. Most of the research so far, however, has focused on understanding the physics of terahertz devices, circuitry and propagation, and on studying physical layer solutions. However, integrating this technology in complex mobile networks requires a proper design of the full communication stack, to address link- and system-level challenges related to network setup, management, coordination, energy efficiency, and end-to-end connectivity. This paper provides an overview of the issues that need to be overcome to introduce the terahertz spectrum in mobile networks, from a MAC, network and transport layer perspective, with considerations on the performance of end-to-end data flows on terahertz connections.Comment: Published on IEEE Communications Magazine, THz Communications: A Catalyst for the Wireless Future, 7 pages, 6 figure

    Dynamic Resource allocation in Millimeter wave technology

    Get PDF
    In this project, dynamic resource allocation in millimeter wave system that holds the effect of millimeter-wave. It also gives the understanding of directivity of antennas as transmitter and receiver side. In addition to this, it is clearing the idea path-loss of signal due to obstacles and molecular absorption and blockage of radiation that are on high frequency. Focus is to explore the effect of blocking and propose a resource allocations scheme that tries to avoid it. Make an idea, on what kind of scenario, this technology can be used in future; by taking into account, users average walking speed. Then to introduce a resource allocation system according to the scenario and make a plan for resource allocation. Also, the use of Poisson distribution the randomly distributed users and their entry time in the system. Simulation is based on matlab 2015a and the final outcome and allocation idea is based on that simulation result

    Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme

    Get PDF
    The envisioned dense nano-network inside the human body at terahertz (THz) frequency suffers a communication performance degradation among nano-devices. The reason for this performance limitation is not only the path loss and molecular absorption noise, but also the presence of multi-user interference and the interference caused by utilising any communication scheme, such as time spread ON—OFF keying (TS-OOK). In this paper, an interference model utilising TS-OOK as a communication scheme of the THz communication channel inside the human body has been developed and the probability distribution of signal-to-interference-plus-noise ratio (SINR) for THz communication within different human tissues, such as blood, skin, and fat, has been analyzed and presented. In addition, this paper evaluates the performance degradation by investigating the mean values of SINR under different node densities in the area and the probabilities of transmitting pulses. It results in the conclusion that the interference restrains the achievable communication distance to approximate 1 mm, and more specific range depends on the particular transmission circumstance. Results presented in this paper also show that by controlling the pulse transmission probability and node density, the system performance can be ameliorated. In particular, SINR of in vivo THz communication between the deterministic targeted transmitter and the receiver with random interfering nodes in the medium improves about 10 dB, when the node density decreases one order. The SINR increases approximate 5 and 2 dB, when the pulse transmitting probability drops from 0.5 to 0.1 and 0.9 to 0.5
    • …
    corecore