10,254 research outputs found

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Optical Non-Orthogonal Multiple Access for Visible Light Communication

    Get PDF
    The proliferation of mobile Internet and connected devices, offering a variety of services at different levels of performance, represents a major challenge for the fifth generation wireless networks and beyond. This requires a paradigm shift towards the development of key enabling techniques for the next generation wireless networks. In this respect, visible light communication (VLC) has recently emerged as a new communication paradigm that is capable of providing ubiquitous connectivity by complementing radio frequency communications. One of the main challenges of VLC systems, however, is the low modulation bandwidth of the light-emitting-diodes, which is in the megahertz range. This article presents a promising technology, referred to as "optical- non-orthogonal multiple access (O-NOMA)", which is envisioned to address the key challenges in the next generation of wireless networks. We provide a detailed overview and analysis of the state-of-the-art integration of O-NOMA in VLC networks. Furthermore, we provide insights on the potential opportunities and challenges as well as some open research problems that are envisioned to pave the way for the future design and implementation of O-NOMA in VLC systems

    Interference Localization for Uplink OFDMA Systems in Presence of CFOs

    Full text link
    Multiple carrier frequency offsets (CFOs) present in the uplink of orthogonal frequency division multiple access (OFDMA) systems adversely affect subcarrier orthogonality and impose a serious performance loss. In this paper, we propose the application of time domain receiver windowing to concentrate the leakage caused by CFOs to a few adjacent subcarriers with almost no additional computational complexity. This allows us to approximate the interference matrix with a quasi-banded matrix by neglecting small elements outside a certain band which enables robust and computationally efficient signal detection. The proposed CFO compensation technique is applicable to all types of subcarrier assignment techniques. Simulation results show that the quasi-banded approximation of the interference matrix is accurate enough to provide almost the same bit error rate performance as that of the optimal solution. The excellent performance of our proposed method is also proven through running an experiment using our FPGA-based system setup.Comment: Accepted in IEEE WCNC 201
    • …
    corecore