9,226 research outputs found

    Interference in Poisson Networks with Isotropically Distributed Nodes

    Full text link
    Practical wireless networks are finite, and hence non-stationary with nodes typically non-homo-geneously deployed over the area. This leads to a location-dependent performance and to boundary effects which are both often neglected in network modeling. In this work, interference in networks with nodes distributed according to an isotropic but not necessarily stationary Poisson point process (PPP) are studied. The resulting link performance is precisely characterized as a function of (i) an arbitrary receiver location and of (ii) an arbitrary isotropic shape of the spatial distribution. Closed-form expressions for the first moment and the Laplace transform of the interference are derived for the path loss exponents α=2\alpha=2 and α=4\alpha=4, and simple bounds are derived for other cases. The developed model is applied to practical problems in network analysis: for instance, the accuracy loss due to neglecting border effects is shown to be undesirably high within transition regions of certain deployment scenarios. Using a throughput metric not relying on the stationarity of the spatial node distribution, the spatial throughput locally around a given node is characterized.Comment: This work was presented in part at ISIT 201

    Performance of Optimum Combining in a Poisson Field of Interferers and Rayleigh Fading Channels

    Full text link
    This paper studies the performance of antenna array processing in distributed multiple access networks without power control. The interference is represented as a Poisson point process. Desired and interfering signals are subject to both path-loss fading (with an exponent greater than 2) and to independent Rayleigh fading. Using these assumptions, we derive the exact closed form expression for the cumulative distribution function of the output signal-to-interference-plus-noise ratio when optimum combining is applied. This results in a pertinent measure of the network performance in terms of the outage probability, which in turn provides insights into the network capacity gain that could be achieved with antenna array processing. We present and discuss examples of applications, as well as some numerical results.Comment: Submitted to IEEE Trans. on Wireless Communication (Jan. 2009

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Laplace Functional Ordering of Point Processes in Large-scale Wireless Networks

    Full text link
    Stochastic orders on point processes are partial orders which capture notions like being larger or more variable. Laplace functional ordering of point processes is a useful stochastic order for comparing spatial deployments of wireless networks. It is shown that the ordering of point processes is preserved under independent operations such as marking, thinning, clustering, superposition, and random translation. Laplace functional ordering can be used to establish comparisons of several performance metrics such as coverage probability, achievable rate, and resource allocation even when closed form expressions of such metrics are unavailable. Applications in several network scenarios are also provided where tradeoffs between coverage and interference as well as fairness and peakyness are studied. Monte-Carlo simulations are used to supplement our analytical results.Comment: 30 pages, 5 figures, Submitted to Hindawi Wireless Communications and Mobile Computin

    On Scaling Limits of Power Law Shot-noise Fields

    Full text link
    This article studies the scaling limit of a class of shot-noise fields defined on an independently marked stationary Poisson point process and with a power law response function. Under appropriate conditions, it is shown that the shot-noise field can be scaled suitably to have a α\alpha-stable limit, intensity of the underlying point process goes to infinity. It is also shown that the finite dimensional distributions of the limiting random field have i.i.d. stable random components. We hence propose to call this limte the α\alpha- stable white noise field. Analogous results are also obtained for the extremal shot-noise field which converges to a Fr\'{e}chet white noise field. Finally, these results are applied to the analysis of wireless networks.Comment: 17 pages, Typos are correcte

    Analysis of Static Cellular Cooperation between Mutually Nearest Neighboring Nodes

    Get PDF
    Cooperation in cellular networks is a promising scheme to improve system performance. Existing works consider that a user dynamically chooses the stations that cooperate for his/her service, but such assumption often has practical limitations. Instead, cooperation groups can be predefined and static, with nodes linked by fixed infrastructure. To analyze such a potential network, we propose a grouping method based on node proximity. With the Mutually Nearest Neighbour Relation, we allow the formation of singles and pairs of nodes. Given an initial topology for the stations, two new point processes are defined, one for the singles and one for the pairs. We derive structural characteristics for these processes and analyse the resulting interference fields. When the node positions follow a Poisson Point Process (PPP) the processes of singles and pairs are not Poisson. However, the performance of the original model can be approximated by the superposition of two PPPs. This allows the derivation of exact expressions for the coverage probability. Numerical evaluation shows coverage gains from different signal cooperation that can reach up to 15% compared to the standard noncooperative coverage. The analysis is general and can be applied to any type of cooperation in pairs of transmitting nodes.Comment: 17 pages, double column, Appendices A-D, 9 Figures, 18 total subfigures. arXiv admin note: text overlap with arXiv:1604.0464

    Interference Mitigation in Large Random Wireless Networks

    Full text link
    A central problem in the operation of large wireless networks is how to deal with interference -- the unwanted signals being sent by transmitters that a receiver is not interested in. This thesis looks at ways of combating such interference. In Chapters 1 and 2, we outline the necessary information and communication theory background, including the concept of capacity. We also include an overview of a new set of schemes for dealing with interference known as interference alignment, paying special attention to a channel-state-based strategy called ergodic interference alignment. In Chapter 3, we consider the operation of large regular and random networks by treating interference as background noise. We consider the local performance of a single node, and the global performance of a very large network. In Chapter 4, we use ergodic interference alignment to derive the asymptotic sum-capacity of large random dense networks. These networks are derived from a physical model of node placement where signal strength decays over the distance between transmitters and receivers. (See also arXiv:1002.0235 and arXiv:0907.5165.) In Chapter 5, we look at methods of reducing the long time delays incurred by ergodic interference alignment. We analyse the tradeoff between reducing delay and lowering the communication rate. (See also arXiv:1004.0208.) In Chapter 6, we outline a problem that is equivalent to the problem of pooled group testing for defective items. We then present some new work that uses information theoretic techniques to attack group testing. We introduce for the first time the concept of the group testing channel, which allows for modelling of a wide range of statistical error models for testing. We derive new results on the number of tests required to accurately detect defective items, including when using sequential `adaptive' tests.Comment: PhD thesis, University of Bristol, 201
    • 

    corecore