160,189 research outputs found
Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites
An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time
Modeling with structure of resins in electonic compornents
In recent years, interfacial fracture becomes one of the most important
problems in the assessment of reliability of electronics packaging. Especially,
underfill resin is used with solder joints in flip chip packaging for
preventing the thermal fatigue fracture in solder joints. In general, the
interfacial strength has been evaluated on the basis of interfacial fracture
mechanics concept. However, as the size of devices decrease, it is difficult to
evaluate the interfacial strength quantitatively. Most of researches in the
interfacial fracture were conducted on the basis of the assumption of the
perfectly bonding condition though the interface has the micro-scale structure
and the bonding is often imperfect. In this study, the mechanical model of the
interfacial structure of resin in electronic components was proposed.
Bimaterial model with the imperfect bonding condition was examined by using a
finite element analysis (FEA). Stress field in the vicinity of interface
depends on the interfacial structure with the imperfect bonding. In the front
of interfacial crack tip, the behavior of process zone is affected by
interfacial structure. However, the instability of fracture for macroscopic
crack which means the fracture toughness is governed by the stress intensity
factor based on the fracture mechanics concept.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
In Situ Nanomechanical Measurements of Interfacial Strength in Membrane-Embedded Chemically Functionalized Si Microwires for Flexible Solar Cells
Arrays of vertically aligned Si microwires embedded in polydimethylsiloxane (PDMS) have emerged as a promising candidate for use in solar energy conversion devices. Such structures are lightweight and concurrently demonstrate competitive efficiency and mechanical flexibility. To ensure reliable functioning under bending and flexing, strong interfacial adhesion between the nanowire and the matrix is needed. In situ uniaxial tensile tests of individual, chemically functionalized, Si microwires embedded in a compliant PDMS matrix reveal that chemical functionality on Si microwire surfaces is directly correlated with interfacial adhesion strength. Chemical functionalization can therefore serve as an effective methodology for accessing a wide range of interfacial adhesion between the rigid constituents and the soft polymer matrix; the adhesion can be quantified by measuring the mechanical strength of such systems
Interfacial strength in fibre reinforced thermoplastics
There has been a rapid growth in the development and application of fibre-reinforced thermoplastic polymer composites in recent years. Parallel to this growth has been the increasing recognition of the need to better understand and measure the micro-mechanical parameters which control the structure-property relationships in such composites. The properties of thermoplastic composites result from a combination of the fibre and matrix properties and the ability to transfer stresses across the fibre-matrix interphase. Optimization of the stress transfer capability of the fibre-matrix interphase region is critical to achieving the required performance level in thermoplastic matrix composites
Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling
A two layer Ti-6Al-4V(wt%)/Ti-43Al-9V-Y(at%) laminate composite sheet with a uniform interfacial microstructure and no discernible defects at the interfaces has been prepared by hot-pack rolling, and its interfacial microstructure and shear strength were characterized. Characterization of the interfacial microstructure shows that there was an interfacial region of uniform thickness of about 250 μm which consisted of two layers: Layer I on the TiAl side which was 80 μm thick and Layer II on the Ti-6Al-4V side which was 170 μm thick. The microstructure of Layer I consisted of massive γ phases, needlelike γ phases and B2 phase matrix, while the microstructure of Layer II consisted of α₂ phase. The microstructure of the interfacial region is the result of the interdiffusion of Ti element from Ti-6Al-4V alloy layer into the TiAl alloy layer and Al element from the TiAl alloy layer into the Ti-6Al-4V alloy layer. The shear strength measurement demonstrated that the bonding strength between the TiAl alloy and Ti-6Al-4V alloy layers in the laminate composite sheet was very high. This means that the quality of the interfacial bonding between the two layers achieved by the multi-path rolling is high, and the interface between the layers is very effective in transferring loading, causing significantly improved toughness and plasticity of the TiAl/Ti-6Al-4V laminate composite sheet
Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites
The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same
Frictional dissipation of polymeric solids vs interfacial glass transition
We present single contact friction experiments between a glassy polymer and
smooth silica substrates grafted with alkylsilane layers of different coverage
densities and morphologies. This allows us to adjust the polymer/substrate
interaction strength. We find that, when going from weak to strong interaction,
the response of the interfacial junction where shear localizes evolves from
that of a highly viscous threshold fluid to that of a plastically deformed
glassy solid. This we analyse as resulting from an interaction-induced
``interfacial glass transition'' helped by pressure
Effect of long range forces on the interfacial profiles in thin binary polymer films
We study the effect of surface fields on the interfacial properties of a
binary polymer melt confined between two parallel walls. Each wall attracts a
different component of the blend by a non-retarded van der Waals potential. An
interface which runs parallel to the surfaces is stabilized in the center of
the film. Using extensive Monte Carlo simulations we study the interfacial
properties as a function of the film thickness, the strength of the surface
forces and the lateral size over which the profiles across the film are
averaged. We find evidence for capillary wave broadening of the apparent
interfacial profiles. However, the apparent interfacial width cannot be
described quantitatively by a simple logarithmic dependence on the film
thickness. The Monte Carlo simulations reveal that the surface fields give rise
to an additional reduction of the intrinsic interfacial width and an increase
of the effective interfacial tension upon decreasing the film thickness. These
modifications of the intrinsic interfacial properties are confirmed by
self-consistent field calculations. Taking account of the thickness dependence
of the intrinsic interfacial properties and the capillary wave broadening, we
can describe our simulation results quantitatively.Comment: to appear in J.Chem.Phy
- …
